
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

R

Code Generation Approaches for an

Automatic Transformation of the Unified Modeling Language to the

Berkeley Open Infrastructure for Network Computing Framework

Christian Benjamin Ries, Vic Grout

Creative and Applied Research for the Digital Society (CARDS)

GlyndwĖr University, United Kingdom

www.christianbenjaminries.de I www.visualgrid.org

Abstract—This paper describes the verification process of the
UML4BOINC stereotypes and the semantic of the stereotypes.
Several ways enable the verification and this paper presents

A. Approaches

II. CODE GENERATION

three different ways: (i) specifications of Domain-specific Mod-
eling Languages (DSMLs), (ii) the use of C++-Models, and
(iii) the use of Visual-Models created with Visu@lGrid [12],

[17]. As a consequence, specific code-generators for the trans-
formation of these models are implemented into applicable parts
for a Berkeley Open Infrastructure for Network Com- puting

(BOINC) project [1]. As for the understanding of how the
transformation is realised, a brief introduction about the
language-recognition and the way how code-generators can be

implemented by use of ANTLR (ANother Tool for Language
Recognition) [11] is given. This paper does not cover all
transformations because most of them can vary, i.e. they

depend on the target language (e.g. C++) and how tool-vendors
handle semantic-models. In addition, steps three and four are
realised within the research iterations of this paper.

Keywords-BOINC, Code Generation, Modelling, UML

I. INTRODUCTION

Unning of a Berkeley Open Infrastructure for Network

Computing (BOINC) project can be a very time-

consuming task. Despite the fact that it is necessary to im-

plement a scientific application (SAPP) [19] and to establish

a fully operable server infrastructure [17], moreover it is

necessary to describe how SAPP and all BOINC components

handle computational jobs. A SAPP has be implemented

by developers and for individual projects several implemen-

tations has to be repeated. By the help of UML (Unified

Modeling Language) [22] one can cope this work by doing it

with the help of a prominent visual programming language.

The idea in this paper is to have UML extension (so-

called stereotypes) and code-generator (CG), which have to

support developers with the ability to generate all required

implementation.

Section II gives a briefly introduction how code generation

works. Section III describes how the CG methodology in this

paper is supported towards to fullfil the task of supporting

BOINC developers by describing. In Section IV the support

of state machine of the UML version 2.4 is scoped. An

abstraction of BOINC’s SAPP and services is shown in the

Sections V–X. In the last Section a conclusion is given.

The code-generation (CG) generator-backend is often

realised by one of the following three approaches [4]:

Å Patterns: This approach allows specifying a search pat-

tern on the model graph. A specific output is generated

for every match.

Å Templates: As the name suggests, code-files are the

basis in the target language. Expressions of a macro

language are inserted or replacement patterns are used

for specifying the generator instructions.

Å Tree-traversing: This kind of code generation ap-

proach specifies a predetermined iteration path over the

Abstract-syntax Tree (AST). Generation instructions

are defined for every node type or leaf and executed

when a node or leaf is passed.

These approaches can be combined. Accordingly, this paper

applies a combination of the second and third approach, i.e.

when the AST is created, the leafs of the AST are trans-

formed into code-fragments and merged in existing template

files. Fig. 1 shows the CG processing parts which are used;

in particular seven parts supports the verification. Section III

introduces the first part (1); the result of it allows the gener-

ation of C++-code which is used to create semantic models.

Such a semantic model can be created in several ways:

(3) with a Domain-specific Modeling Language (DSML)

description, (4) as a direct C++ implementation based on

the previous created semantic model and (5) as a visual

description. These approaches end up in (6) and describe a

BOINC project. The description is transformed in different

parts which are relevant for BOINC, e.g. configurations,

implementations of services and scientific applications or

the creation of workunits. For the steps between (1), (2),

(6), and the creation of BOINC parts, the software library

(7) libries is used [13].

B. ANother Tool for Language Recognition (ANTLR)

ANTLR [11] is a parser generator used to implement

DSL interpreters, compilers and other translators, e.g. for

the handling of specific configuration file formats. Two steps

177

http://www.christianbenjaminries.de/
http://www.christianbenjaminries.de/
http://www.visualgrid.org/

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

Figure 1. Architecture of the CG process; different models are used to
generate a BOINC project with its used components and configurations.

are necessary for language recognition: lexical analysis and

parsing [8]. Fig. 2 shows the general language recognition

process. An input stream as 1 + 21 => res consists of

different bytes. This stream can be filtered by a lexer which

splits the bytes into belonging tokens, based on an user-

defined syntax or grammar: a number is defined as an INT

(integer), the plus sign as ADD (addition) and => is used

to assign (ASSIGN) ‘something’ to res , the underscores

are whitespaces and are not recognized. The input stream

is filtered and transformed into several tokens. Every token

has its own meaning, e.g. ADD can be used to sum-up two

integers. In addition, the chain of different tokens can have

a different meaning (so-called semantic). The parser is used

to interpret the tokens, i.e. either an optional AST can be

created and analysed; a direct interpretation is possible.

Figure 2. General process description of language recognition.

C. Abstract-syntax Tree (AST)

Generally, an AST is an abstract representation of any

formatted input or token stream; it is optional, a direct

interpretation can be done. The AST is created by adding

mapping rules directly to the syntax of the new language:

m u l t i p l i c a t i o n : v1 =INT ’ ɣ ’ v2 =INT >̨^(MUL $v1 $v2) ;

The operator - > introduces the tree construction rules. The

body of the rule is a list where the first element is the

node type (MUL) and followed by the child nodes which

are the factors for the multiplication in this case [5]. By

means of this approach two syntax trees are defined, i.e. an

input syntax on the left-hand side and an AST-syntax on the

right-hand side.

D. ANTLR and the Extended Backus-Naur Form (EBNF)

The EBNF (Extended Backus-Naur Form) is a syntactic

metalanguage which is a notation for defining the syntax

of a language through a set of rules. Each rule names a

part of the language (called a non-terminal symbol of a

language) and then defines its possible forms. A terminal

symbol of a language is an atom that cannot be split into

smaller components of the language [7]. The EBNF has a

small set of syntax rules and ANTLR applies most of the

EBNFs with modifications as shown in Table I.

EBNF ANTLR

‘a’ zero or once [a] a?

‘a’ zero or more {a} a*
‘a’ once or more a {a} a+
‘a’ or ’b’ a b & a b
(‘a’ or ’b’) and ‘c’ (a b) c & (a b) c

Table I
EXCERP T OF THE EBNF’S AND ANTLR’S S YNTAX [11], [7].

Fig. 2 shows a small summation (s1) of two integer values

and an assignment to the variable res. The second summation

(s2) allows unlimited summations, e.g. 20 + 22 + 222 => res.

Listing 1 states the EBNF-syntax of this small command.

Any token is defined in the last five lines, i.e. integers only

consist of numbers. The last line defines whitespaces (WSs)

and a special command forwards these characters to a hidden

channel.

s 1 : INT ADD INT ASSIGN ID ;

s 2 : (INT (ADD INT) ɣ ASSIGN ID) + ;

ADD: ’ + ’ ;
ASSIGN : ’ = > ’ ;
INT : ’ 0 ’ . . ’ 9 ’ + ;
ID : (’ a ’ . . ’ z ’ | ’ A ’ . . ’ Z ’ | ’ _ ’)

(’ a ’ . . ’ z ’ | ’ A ’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ _ ’) ɣ;
WS: (’ ’ | ’ \ n ’ | ’ \ r ’ | ’ \ t ’) + { $ c h a n n e l =HIDDEN ; } ;

Listing 1. EBNF-syntax for the addition of two integers and assignment.

Finally, the ANTLR syntax enables the direct AST creation.

Listing 2 shows how the AST on the bottom right-hand side

of Fig. 2 can be described. The ANTLR operator - > is used

to map the EBNF-syntax to a valid AST-syntax. The result

of this mapping and its dataset is shown in Fig. 3.

s um m ation : l e a f ɣ >̨ l e a f ɣ ;
l e a f : INT (’ + ’ INT) ɣ ’= > ’ ID >̨

^ (ASSIGN ^ (ADD INT ɣ) ID) ;

Listing 2. Definition of the AST of the summation.

178

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

Figure 3. AST for the summation of unlimited integer values.

E. Result

Fig. 2 shows the parser during the language-recognition

and with two outgoing transitions: (1) a direct transition to

output and (2) a detour of AST creation are subsequently

finished by an output generation. The first approach is also

called “embedded translation” because it populates the

semantic model from the embedding code to the parser;

it implements semantic model at appropriate points in the

parse [5]. The use of an additional AST can be more explicit

and easier to maintain [10].

III. GENERATION OF THE SEMANTIC MODELS

The research for this paper required the implementation of

different approaches, in order to verify and modify models in

an iterative way. All models are based on an object-oriented

hierarchy; the creation is supported by a self-defined DSML

and allows a compact specifying of all necessary informa-

tion: (i) datatype specifications, (ii) creation of enumerations,

(iii) classes with attributes and methods, (iv) derivations

of classes and (v) different kinds of associations between

classes and their different multiplicities, i.e. compositions

and aggregations.

Listing 3 shows an example of the created DSML. Line 1

specifies additional header files. Lines 2-3 indicate a map-

ping of used datatypes within the DSML which are therefore

mapped in the target’s programming language datatypes.

Line 4 specifies an enumeration usable as a datatype. The

last lines specify three classes: Project, Host and NIC.

Project has one attribute name and one association to one

or more Host instances. Host itself is a composition of one

or more NIC instances. The CG produces setter and getter

methods and routines automatically in order to check the

multiplicities during the adherence of instances to associa-

tions or compositions. Finally, every class gets a factory and

destroyer functionality [6].

i n c l u d e s { " G e n e r a l . h " }

d a t a t y p e S t r i n g " s t d : : s t r i n g " ;
d a t a t y p e I n t e g e r " i n t " ;
O p e r a t i n g S y s t e m [U buntu =1 , U b u n t u S e r v e r = 2] { }
P r o j e c t { name : S t r i n g [1] ;

a s s o c i a t i o n h o s t s : H o s t [1 . . ɣ] ; }
H o s t { c o m p o s i t i o n n e t w o r k : NIC [1 . . ɣ] ;

/ / a s s o c i a t i o n : NIC [1 . . ɣ] ; }
NIC { d e v i c e : S t r i n g [1] ;

i p v a l u e : S t r i n g [0 . . 1] ; }

Listing 3. DSML description for the creation of a class-hierarchy.

IV.

GENERATION OF STATEMACHINES

UML’s StateMachine package has been used for the

research of this paper. There are some state machine imple-

mentations for the combination with C++ [2], [3], [9] which

are partly based on the UML specification. All of them

are restricted in their use (e.g. no support for orthogonal

regions, no entry and exit points). Concerning this, the UML

2 Statemachine for C++ (UML2STM4CPP) [20] and UML’s

StateMachine in version 2.4 support have been created and

applied. UML2STM4CPP’s DSL Ries Statemachine (RSM)

enables the creation of hierarchy state machine constructs.

Fig. 4 shows a small state machine which is based on an

initialisation state, choice state, two system states, and a final

state. Listing 4 shows an excerpt of the DSL definition for

this state machine.

Figure 4. UML Pseudostates with guarded and default transition.

Listing 4 shows the DSL definition for the state machine

in Fig. 4. The state machine has two ar- eas: (1)

States{...} defines states and regions, and (2)

Transitions{...} defines transitions, guards and

events between states and regions. The DSL defines all used

nodes, e.g. decision node, initial node, action node, and final

node. Finally, the DSL is an equipment with extra code

anchors:

Å <[onEntry CODE-]> is executed on entering.

Å <[- CODE-]> is the main part.

Å <[onExit CODE-]> is executed on state’s leaving.

The combination of these three anchors with the first anchor

in lines 7-9 allows fulfilling the state machine with arbitrary

behaviour.

A n c h o r s <[˛̨ # i n c l u d e < T e s t e r . h>

T e s t e r t e s t e r ; i n t x;˛̨]>
S t a t e m a c h i n e P s e u d o s t a t e s {

S t a t e s {
I n i t i a l S t a r t
S i m p l e P r o c e s s i n g

<[o n E n t r y / ɣ do some a c t i o n ɣ/ ˛̨]>
<[˛̨ t e s t e r . p r o c e s s i n g () ; ˛̨]>

<[o n E x i t / ɣ do some a c t i o n ɣ/ ˛̨]>
S i m p l e C l o s e
F i n a l End

}
T r a n s i t i o n s {

R : S t a r t [t e s t e r . x () == 1]
/ t e s t e r . s e t X (2) == P r o c e s s i n g

R : S t a r t [t e s t e r . x () > 1]

179

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

/ t e s t e r . s e t X (3) == C l o s e
R : S t a r t == End
R : P r o c e s s i n g == End
R : C l o s e / t e s t e r . show () == End

}
}

Listing 4. A UML2STM4CPP example of the state machine in Fig. 4.

V. SCIENTIFIC APPLICATION

BOINC offers an Application-programming Interface

(API) for the procedural implementation of scientific ap-

plications. UML is mainly an object-orientated specification

and modelling approach. Generally, some tasks have to be

done whenever a new scientific application (SAPP) has to be

implemented. In order to avoid these incidents, an Object-

orientated Programming (OOP) abstraction is implemented

and set up on the top of BOINC’s API [14], [19]. Fig. 5

shows the abstraction layers of this approach. The OOP

layer provides a top-down approach where most of BOINC’s

functionalities are merged in objects and used as building

blocks, e.g. BOINC’s checkpoint mechanism is abstracted

by the class Ries::BOINC::MVC::Checkpoint [13].

The biggest issue of a SAPP is the computation’s core

Figure 5. Object-orientated Programming layer for BOINC.

which provides the “intelligence” and creates engineering

or scientific results. Fig. 6 shows an excerpt of the OOP

approach. In this case, two scientific applications are given:

(i) LMBoinc [18] and (ii) Spinhenge [21]. In both cases,

only the doWork method has to be implemented. The

instantiation of the BOINC framework and the OOP layers.

Main is instantiated by BOINC’s client and has access to

the MVC::Handler which provides information about the

computation state.

A. State Machine of a Scientific Application

The fundamental idea of the state machine for the SAPP

is to reduce the complexity based on the fact that only

relevant functions are used for creating various state nodes,

e.g. a state “Initialization” is used for initializing BOINC’s

runtime environment or “Computing” is used for processing

the core computation; thus, it will call doWork() . SAPP’s

state machine possesses three Regions:

Å R1 Is used for the handling of asynchronous-messages,

Å R2 is used for the checkpointing process, and

Å R2 specifies the computation of the SAPP.

The Transitions of the processing states and the three regions

can be triggered by external events and are able to call

actions when they are used.

B. Mapping of Activities and Actions

Most of UML4BOINC’s stereotypes can be mapped di-

rectly to BOINC’s API-calls or with less code-complexity.

The current section illustrates how the CG from UML to

implementation code can be done.

1) «Atomic»: Atomic functions cannot be interrupted and

have to be finished before subsequent actions or activities are

executed. Listing 5 shows a small code-snippet. Line 2 opens

and line 5 closes the atomic area; thus, any action or activity

is called and cannot be interrupted between these calls. Fig.

7 shows a UML model consisting of an atomic area. It

executes an activity with an initialisation and final node and

then executes the “transferMoney()” action. Exceptions

cannot interrupt the execution.

/ / / S t a r t : << A tom i c >>

b o i n c _ b e g i n _ c r i t i c a l _ s e c t i o n () ;
t r a n s f e r M o n e y () ; / ɣ . . . ɣ/

b o i n c _ e n d _ c r i t i c a l _ s e c t i o n () ;
/ / / End : << A tom i c >>

Listing 5. Code-implementation example of BOINC’s atomic mechanism.

Figure 6. Object-orientated Abstraction of BOINC’s API.

computation is called within Main and responsible for the

Figure 7. Code-mapping for UML4BOINC’s «Atomic».

180

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

2) «Action» & type=#FractionDone: This type of «Ac-

tion» is used in order to inform the BOINC client how much

work has been accomplished. It is a value between zero and

one, i.e. a percentage descriptor. The mapping of «Action»

in BOINC’s API is a single line: boinc_fraction_done (fdone).

fdone can be an input pin and requires a floating-point value

(PrimitiveType::Real [22]) which has to be calculated by the

scientific application developer.

3) «Action» & type=#FileInfo: It enables querying in-

formation of specific files. Listing 6 implements «File-

Information» directly as a C++-class, namely tag-values as

attributes and the operations as methods. «Action» is

mapped directly: (a) the input pin parameter path is used

as query ’s parameter, and (b) the output pin finfo as a new

variable which assigns the returning value of query .

Figure 8. «Action» to query file information.

c l a s s F i l e I n f o r m a t i o n {
p u b l i c :
enum F i l e K i n d { Unknown =0 , F i l e =1 ,

D i r e c t o r y =2 , S y m l i n k = 3 } ;
s t a t i c F i l e K i n d t y p e ;
s t a t i c s t d : : s t r i n g cwd , a b s o l u t e P a t h ;
s t a t i c d o u b l e f i l e s i z e , d i r s i z e ;
s t a t i c d o u b l e t o t a l S p a c e , f r e e S p a c e ;

s t a t i c F i l e I n f o r m a t i o n q u e r y (c o n s t ch ar ɣp a t h) {

F i l e I n f o r m a t i o n f i ;
i f (i s _ f i l e (p a t h)) t y p e = F i l e K i n d : : F i l e ;
e l s e i f (i s _ d i r (p a t h)) t y p e = F i l e K i n d : : D i r e c t o r y ;
e l s e i f (i s _ s y m l i n k (p a t h))

t y p e = F i l e K i n d : : S y m l i n k ;
e l s e t y p e =Unknown ;
ch ar b u f f e r [4 0 9 6] = { ’ \ 0 ’ } ;
b o i n c _ g e t c w d (b u f f e r) ; cwd = b u f f e r ;
r e l a t i v e _ t o _ a b s o l u t e (p a t h , b u f f e r) ;
a b s o l u t e P a t h = b u f f e r ;
f i l e _ s i z e (p a t h , f i l e s i z e) ;
d i r _ s i z e (p a t h , d i r s i z e) ;
g e t _ f i l e s y s t e m _ i n f o (t o t a l S p a c e , f r e e S p a c e) ;
r e t u r n f i ;

the file “FileInformation.cpp”. The state of the lock/unlock-

call is stored in the output pin state after the execution.

When something goes wrong, an (exception named) Excep-

tionLocking which can be caught and handled individually,

will be raised. Every locking mechanism is only usable in

its context. When a global lock has to be used for specific

files, it is necessary to define its lock instance in a global

way.

Figure 9. «Action» for locking/unlocking files.

5) «Action» & type=#FileHandling: Fig. 10 and Fig. 11

show how UML modelling can be realised when

UML4BOINC’s «Action» and type=#FileHandling are used.

«Action»’s characteristic is specified by the input pin mode;

it states how many input pins can exist in one action. The

notes in Fig. 10 and Fig. 11 describe the modes with one

and two additional input pins. These actions and individual

characteristics can be directly transformed into C++-

implementations. Table II shows the related mapping of

mode’s value to the suitable BOINC API-call. This is a

trivial approach and some modes can need more specific

implementation, e.g. the mode Open can be used for virtual

filenames or/and for filenames with immediate access. In

case the filename is a virtual name, it is necessary to resolve

the physical filename. Listing 7 shows a general approach for

file opening. Various problems can arise when the file is in a

specific file format, e.g. it is a ZIP-archive and the opening

differs from mentioned approaches. Opening approaches can

be handled directly by the CG or implemented in the OOP

abstraction layer. In this regard, CG is mostly a tool-specific

task and can be handled in different ways.

s t d : : s t r i n g i n p u t D a t a I n ;

b o i n c _ r e s o l v e _ f i l e n a m e _ s (p a t h , i n p u t D a t a I n) ;
i n t r e s = b o i n c _ f o p e n (i n p u t D a t a I n , f i l e m o d e) ;

Listing 7. General code-implementation for file opening.

}
} ;
/ ɣ . . . i n i t i a l i s e d e f a u l t v a l u e s ! ɣ/

i n t main (i n t a r g c , ch ar ˠɣ a r g v) {
F i l e I n f o r m a t i o n f i n f o =

F i l e I n f o r m a t i o n : : q u e r y (" F i l e I n f o r m a t i o n . cpp ") ;

/ ɣ . . . ɣ/
}

Listing 6. «FileInformation» and «Action» for file information queries.

4) «Action» & type=#Locking: BOINC provides a func-

tionality of preventing access to specific files, i.e. the

BOINC-structure FILE_LOCK is used for locking and un-

locking a file. Every file needs its own locking instance.

Fig. 9 shows «Action» with one input pin to lock/unlock

Figure 10. «Action» for file handling with two parameters.

6) «Action» & type=#TrickleDown: Asynchronous-

messages are not handled immediately. The SAPP is

responsible for collecting all messages. The collection

181

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

Mode BOINC’s Function Call

one additional input pin

Touch int res = boinc_touch_file (path) ;
Delete int res = boinc_delete_file (path) ;
Mkdir int res = boinc_mkdir(path) ;
Rmdir int res = boinc_rmdir (path) ;
Cleandir int res = clean_out_dir (path) ;

two additional input pins

Copy int res = boinc_copy(path , newpath);
Chown int res = boinc_chown(path, owner);
Rename int res = boinc_rename(path, newpath);
Open FILE rɣes = boinc_fopen(path , filemode) ;

Figure 12. Code-mapping for UML4BOINC’s «TrickleUp».

Figure 11. «Action» for file handling with three parameters.

ch ar msgUp [1 0 2 4] = { ’ \ 0 ’ } ;
s n p r i n t f (msgUp , 1 0 2 4 ,

" < t o >%s < / t o > \ n< from >%s < / from > \ n<msg>%s < / msg > \ n " ,
m e s s a g e F i e l d s [0] ,
m e s s a g e F i e l d s [1] ,
m e s s a g e F i e l d s [2]

}

Table II

MAP P ING OF UML TO BOINC’S API.

process can be done in the first region of the state machine.

The messages are provided by the output pin of «Action».

Listing 8 shows the receiving of trickle-messages and a

suggestion for handling them.

ch ar t r i c k l e F i l e n a m e [3 2] = { ’ \ 0 ’ } ;

i n t r e t v a l = b o i n c _ r e c e i v e _ t r i c k l e _ d o w n (
t r i c k l e F i l e n a m e , 3 2) ;

FILE ɣt r i c k l e F i l e = b o i n c _ f o p e n (t r i c k l e F i l e n a m e , "
r ") ;

i f (t r i c k l e F i l e) {

/ / / (1) r e a d i n t h e t r i c k l e m̨ e s s a g e c o n t e n t
/ / / (2) p a r s e t h e c o n t e n t
/ / / (3) c r e a t e a s p e c i f i c T r i c k l e M e s s a g e i n s t a n c e
/ / / and f i l l t h i s i n s t a n c e w i t h c o n t e n t o f

t h e m e s s a g e

i n t r e t = b o i n c _ s e n d _ t r i c k l e _ u p (
(ch ar ɣ) v a r i e t y , msgUp) ;

i f (r e t) { / ɣ E r r o r h̨ a n d l i n g , . . . ɣ/ }

Listing 9. Trickle-message handling on the client-side.

Listing 10 shows how the set-up for activating message

handling has to be done by programming when on client-

side. The handling can be activated during the initialisation

of the SAPP, i.e. in the state “Initialization”. Section X

describes the server-side.

i n t main (i n t a r g c , ch ar ˠɣ a r g v) {
BOINC_OPTIONS o p t i o n s ;
o p t i o n s . h a n d l e _ t r i c k l e _ u p s = t r u e ;
o p t i o n s . h a n d l e _ t r i c k l e _ d o w n s = t r u e ;
i n t r e t u r n V a l u e = b o i n c _ i n i t _ o p t i o n s (& o p t i o n s) ;
. . .

}

Listing 10. Enabling of BOINC’s asynchronous-messages on clients.

8) «Timing»: Periodically executed function-calls can

be implemented in a SAPP, e.g. to calculate an average

value or to handle input-/output calls. BOINC provides

a mechanism which enables adding of specific functions.

Accordingly, a function can be used as callback-function
by BOINC’s internal. UML4BOINC specifies «Timing»

}

Listing 8. Approach of how the trickle-message handlers can be
implemented on the client-side.

7) «TrickleUp»: Fig. 12 shows UML4BOINC’s stereo-

type «TrickleUp» for sending messages from every host

to a BOINC project. Generally, this stereotype can only

be used by clients. Listing 9 shows an example of how

the stereotype can be implemented. A vector container for

storing string values is defined and provides the planned

content of the message which is created in lines 5-10. The

sending itself is done in line 11. The stereotype does not

provide an output pin for handling the return value of the

sending function. Thus, it is checked in order to enable

error treatment. However, the reception of messages and

their handling on the server-side require more work. Thus,

the content of the message must be parsed and handled

individually.

s t d : : v e c t o r < s t d : : s t r i n g > m e s s a g e F i e l d s ;

/ ɣ . . . f i l l m e s s a g e F i e l d s w i t h d a t a ! ɣ/
i f (m e s s a g e F i e l d s . s i z e () >= 3) {

in order to add several different function calls as shown

in Fig. 13. Only «Timing» has to be added to BOINC’s

callback mechanism. Listing 11 shows how the generated

code can look like. The first three lines are dummy imple-

mentations and can be replaced by more complex action

flows. The last execution is compared to its individual delay

value (Line 5) by timingFunction . When the current

time possesses less than the last timingMoments value

plus the timingDelays value, then the action is

executed. This implementation approach does not allow

executing the three functions in an orthogonal way. Finally,

the timingFunction has to be registered for execution

within BOINC’s runtime environment and this is done in

line 29.

v o i d C h e c k p o i n t i n g () { / ɣ . . . ɣ/ }
v o i d c a l c u l a t e A v e r a g e () { / ɣ . . . ɣ/ }
v o i d c a l c u l a t e M e d i a () { / ɣ . . . ɣ/ }

i n t t i m i n g D e l a y s [] { 1 5 , 5 , 30 } ;

i n t t i m i n g M o m e n t s [] { 0 , 0 , 0 } ;

182

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

Figure 13. Code-mapping for UML4BOINC’s «Timing».

FUNC_PTR t i m i n g F u n c t i o n s [] {
C h e c k p o i n t i n g , c a l c u l a t e A v e r a g e , c a l c u l a t e M e d i a

} ;

v o i d t i m i n g F u n c t i o n () {

s t a t i c b o o l f i r s t R u n = t r u e ;
i f (f i r s t R u n) {

f o r (i n t i = 0 ; i < 3 ; i ++)
t i m i n g M o m e n t s [i] = t i m e (NULL) ;

f i r s t R u n = f a l s e ;
}
f o r (i n t i = 0 ; i < 3 ; i ++) {
i n t t i m e E d g e = t i m i n g M o m e n t s [i] + t i m i n g D e l a y s [i] ;

i f (t i m e E d g e > t i m e (NULL))
c o n t i n u e ;
(t i m i n g F u n c t i o n s [i]) () ;
t i m i n g M o m e n t s [i] = t i m e (NULL) ;

}
}

i n t main (i n t a r g c , ch ar ˠɣ a r g v) {

b o i n c _ i n i t () ;
b o i n c _ r e g i s t e r _ t i m e r _ c a l l b a c k (t i m i n g F u n c t i o n) ;

/ / Keeps t h e a p p l i c a t i o n r u n n i n g . . .
f o r (i n t i = 0 ; i < 6 0 0 ; i ++) s l e e p (1) ;

}

Listing 11. «Timing» & «TimingFlow» and their embedded actions.

9) «WaitForNetwork»: Fig. 14 shows the two outgoing

transitions. Listing 12 shows an approach of how «Wait-

ForNetwork» can be implemented. The structural feature

is directly created in lines 2-7. The true-guarded transition

is implemented by lines 12-13, and the false-guarded by

lines 15-16.

/ / / S t a r t : << W a i t F o r N e t w o r k >>
d e f i n e TRIES 10
b o i n c _ n e e d _ n e t w o r k () ;
b o o l n e t a v a i l a b l e = f a l s e ;
f o r (i n t _ t r y = 0 ; _ t r y < TRIES ; _ t r y ++) {

n e t a v a i l a b l e = (b o i n c _ n e t w o r k _ p o l l () ? t r u e : f a l s e) ;

Figure 14. «WaitForNetwork» to query network connectivity.

VI. SERVICES

Services are only present on the server-side of a BOINC

project; it needs information about the individually services:

firstly, the location of the executability, its parameters for

starting, and whether it is enabled or disabled; secondly,

the application itself has to be implemented or a pre-

implemented version has to be installed. The services are

modelled within the (a) Infrastructure and (b) Application

diagrams; in case the service is a task the (c) Timing diagram

is also relevant. This part is covered by additional work [16].

VII. WORK

BOINC’s work processing is based on a small state-chain,

namely start Ÿ creation Ÿ processing Ÿ validation Ÿ

assimilation Ÿ end [15]. Fig. 15 shows how series and

workunits can be modelled by a visual approach provided by

Visu@lGrid [12], [17]. Different series can be created within

Work branch (1). Every series contains a direct description

of the used workunit, the input and output files. Any file can

have individual datafields to set-up the runtime parameter

for the computation. The visualisation (2) shows the series

with input/output files. images.zip is a physical file which

can be added manually or dynamically in this case and by

the use of «InterfaceDataSource». (3) and (4) show how the

relation between the first four series and a fifth serie can be

described. A detailed explanation can be found in additional

work [15].

}
/ / / End : << W a i t F o r N e t w o r k >>

i f (n e t a v a i l a b l e) {

/ / / T r a n s i t i o n : [t r u e]
s t d : : c o u t << " NETWORK" << s t d : : e n d l ;

} e l s e {
/ / / T r a n s i t i o n : [f a l s e]
s t d : : c o u t << " NO NETWORK" << s t d : : e n d l ;

}

Listing 12. «WaitForNetwork» to query network connectivity.

Figure 15. Visual modelling for the specification of BOINC workunits; The
Series and the relation among themselbes can be modelled with associations
between input and output files.

VIII. WORK VALIDATION

Workunit specifications state on the one hand how out-

put files have to be opened and on the other hand how

the «InterfaceValidate» can be used. It provides access to

183

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

the output files for validation processes. Thus, the inter-

face «InterfaceDataset» provides an universal way to open

these output files. BOINC’s validation framework exists on

a high-level and low-level abstraction [14, Section 9.3]. This

paper covers only the high-level abstraction which is

based on three steps: (i) initialisation, (ii) comparing, and

(iii) cleanup. Only the second step has to be filled with

functionality for a successful validation. As shown in Listing

13, the result has to be stored in the fifth parameter:

(a) false or (b) true, i.e. the computational result is not

valid or is valid. The first & second and third & fourth

parameters are used to handle the result files and result raw

datasets. Fig. 16 shows how the Listing 13 can be modelled

in UML by use of a UML Activity. The parameters of the

function compare_results are modelled as UML

ParameterNodes. The comparing statement in line 4 is

transformed into a UML DecisionNode and two outgoing

transitions with equipment guards. These guards are the real

validation parts and decide whether the computational results

are valid or not, i.e. the output UML ParameterNode is

valued with false or true. This approach can be added to

the UML StateMachine and extended by «Validation».

i n t c o m p a r e _ r e s u l t s (RESULT & r 1 , v o i d ɣd a t a 1 ,

RESULT & r 2 , v o i d ɣd a t a 2 ,
b o o l & m atch) {

m atch = (r 1 . c p u _ t i m e >= 10 && r 2 . c p u _ t i m e >= 1 0) ;
r e t u r n 0 ;

}

Listing 13. Part of BOINC’s high-level validation framework.

can be extended by ports in order to use file-directories or

database tables for storing.

X. ASYNCHRONOUS MESSAGES

This section gives an example of how asynchronous-

messages can be transformed into code and by use of the

relevant UML4BOINC stereotypes on server-side. When

asynchronous-messages are used on both sides, the message

handling must be enabled in any case on server- and client-

side. On the server-side a specific XML configuration has

to be set.

A. Server-Side Handling

BOINC provides a default implementation for the han-

dling of asynchronous-messages (AMs), i.e. a kind of ping-

pong system. This examplary application iterates over a

BOINC database table and queries unhandled AMs. The

queried messages are processed by a specific function and

therefore named handled_trickle(DB_MSG_FROM_ -

HOST&). The parameter is the database entry and contains

information about the sender and the message send which

is text-based. Fig. 17 shows how an AM is specified by

UML4BOINC. «TrickleMessage» specifies a chat message

and contains one message value which is defined by three

additional datafields: (i) to, (ii) from, and (iii) msg. This

chat message has one receiver: C.B.Ries. The specification

is not always available during runtime. Chat messages are

transmitted primarily from users; the specification does not

possess any association to receivers at this moment, only

textual information about the planned receivers. The

association is created on server-side when message receivers

are queried from the user database of a BOINC project.

Fig. 18 shows this detail through another viewpoint. One

user transmits the «TrickleMessage» 1: chatMessage01 to

the BOINC project. The message contains only a description

of the targeting message’s receivers. The «TrickleMessage»

1.1: chatMessage02 has a different format. messageFields

has modified the information into an absolute information

of the targeting receiver. The replacement of the targeting
Figure 16. Part of BOINC’s high-level validation framework in UML.

IX. WORK ASSIMILATION

The «InterfaceAssimilate» can be used for the assimilation

of computational results. It provides access to output files

and then enables interface «InterfaceDataset» to open the

output files. BOINC’s assimilation framework provides a

function which has to be filled with assimilation routines,

i.e. by use of the standard implementation or an own spec-

ification and how output files and results have to be stored.

Generally, BOINC’s framework provides two targets for

storing: (i) storing in a specific file-directory and (ii) storing

in a database. The destination of storing is specified within

the CG process and by the Infrastructure diagram. The

infrastructure specification contains an «Assimilator» which

Figure 17. Instantiation of the stereotypes for asynchronous-messages.

receiver information needs to be handled on the server-side.

Additional UML Actions can be specified for this case; it is

not done in this research. Listing 14 shows the pseudocode

of the relaying mechanism for chat messages on the server-

side. Information of the received message is filtered: (i) the

sender host, (ii) the sending user, and (iii) the names of

184

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

Figure 18. Asynchronous-messages within a BOINC project.

the target users. The received message is parsed into the

format for the targeting users in the next step. Thus, the

message is send to all hosts of an user and accordingly to

every workunit. As a matter of fact, BOINC’s AMs need

the information about the workunit and which message has

to be handled. When a message shall target a specific user,

the sender can not forsee when and where it will be read

by the receiver. According to that, the server sends it to all

workunits.

h a n d l e _ t r i c k l e (MSG_FROM_HOST& mfh) {
h o s t F r o m = HOST (mfh)
u s e r F r o m = USER(mfh)
u s e r s T o = USERS (mfh)

m = MAP_RECEIVED_MSG_TO_SEND_MSG(mfh)

do u s e r = S e n d _ M e s s a g e _ t o _ U s e r s (u s e r s T o)

do w o r k u n i t = S e n d _ M e s s a g e _ t o _ W o r k u n i t (u s e r)
SEND_MESSAGE(w o r k u n i t , m)

done
done

}

Listing 14. Pseudocode for the trasnfer of chat messages between users.

Listing 14 shows how little UML Action is needed in order

to implement the pseudocode. It requires five actions and

additional structural activities, i.e. a for-loop or do- while

loop can be used to iterate over all datasets. Fig. 19 shows

how this can be realised through UML. The received

message is specified as a UML ObjectNode and used as

input value for the three UML Actions: (i) HOST, (ii) USER

and (iii) USERS. The first two are not used in this example.

The third action is used in order to filter all users and query

the information from the database. The user information

is parsed to the first iterative element which consequently

iterates over all users. The individual users are parsed to the

second iterative; it enables an iteration over all workunits

of the specific users. Finally, a pre-parsed message is send

to a specific user’s workunit. The handling of AMs is less

complex on the client- than on the server-side. The client

only receives and transmits messages from and to a BOINC

project. It must not query any other information from a

database. The Transmission of AMs is provided by

«TrickleUp» and the reception is supplied by «Action».

Figure 19. UML modelling for asynchronous-messages on the server-side.

XI. CONCLUSION

This paper presented a CG approach for the transforma-

tion of UML4BOINC’s stereotypes into an implementation.

At first, different CG approaches have been introduced

followed by examples of language recognition with ANTLR.

Subsequently, the direct transformation of models into exe-

cutable code demonstrates how an AST can be used for CG.

In addition, it has been exemplified how a semantic model

can be generated automatically through a specific DSML.

Accordingly a DSML named RSM has been introduced;

it enables the creation of a state machine which is based

on a scientific application. Secondly, an object-orientated

abstraction of BOINC’s API has been presented briefly.

However, the CG transformation is not based on strict rules.

Developers can decide how they implement its BOINC parts

and scientific applications.

REFERENCES

[1] D.P.Anderson, “BOINC: A system for public-resource com-
puting and storage,” in Grid Computing 2004 Proceedings
Fifth IEEEACM International Workshop (R. Buyya, ed.), pp.
4-10, IEEE Computer Soc, 2004.

[2] A. H. Dönni, “The Boost Statechart Library,”

http://www.boost.org/doc/libs/1_46_0/libs/statechart/doc/-
index.html [Online. Last accessed: 10th December 2012],
2007.

[3] C. J. Henry, “Meta State Machine (MSM),”

http://www.boost.org/doc/libs/1_49_0/libs/msm/doc/HTML/-
index.html [Online. Last accessed: 23rd November 2012],
2010.

[4] M. Feikas, “How to represent Models, Languages and Trans-

formations,” System, 2006.

[5] M. Fowler, Domain-Specific Languages, vol. 5658 of Lecture
Notes in Computer Science. Addison-Wesley Professional,
2010.

185

http://www.boost.org/doc/libs/1_46_0/libs/statechart/doc/-
http://www.boost.org/doc/libs/1_46_0/libs/statechart/doc/-
http://www.boost.org/doc/libs/1_49_0/libs/msm/doc/HTML/-
http://www.boost.org/doc/libs/1_49_0/libs/msm/doc/HTML/-

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

 Doi: 10.7321/jscse.v3.n3.28 e-ISSN: 2251-7545

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissies, Design
Patterns, vol. 47 of Addison Wesley Professional Computing
Series. Addison Wesley, 1995.

[7] “Information technology – Syntactic metalanguage – Ex-

tended BNF.” 1996

[8] T. A. Morgensen, “Basics of Compiler Design Extended
edition,” Analysis, 2008

[9] I. A. Niaz, Automatic Code Generation From UML Class and

Statechart Diagrams. Dissertation, University of Tsukuba,
2005

[10] T. Parr, “Translators should use tree grammars,” tech rep.,

University of San Francisco, San Francisco, CA, 2004.

[11] T. Parr, The Definitive ANTLR Reference ï Building Domain-
Specific Languages. Pragmatic Programmers, ISBN: 978-
0978739256, 2007.

[12] C. B. Ries, “Visu@lGrid – Integrated Development Environ-

ment for BOINC,” http://visualgrid.sourceforge.net [Online.
Last accessed: 2012]

[13] C. B. Ries, “libries – Research library for Visu@lGrid,”

http://libries.sourceforge.net [Online. Last accessed: 2012]

[14] C. B. Ries. “BOINC - Hochleistungsrechnen mit Berkeley
Open Infrastructure for Network Computing.” Berlin Heidel-
berg: Springer-Verlag, 2012

[15] C. B. Ries, C. Schröder, and V.Grout. “Model-based
Gener- ation of Workunits, Computation Sequences, Series
and Ser- vice Interfaces for BOINC based Projects,” in Proc.
SERPô12 (Worldcomp), Las Vegas (NV) 2012

[16] C. B. Ries, C. Schröder, and V. Grout. “Approach of a UML

Profile for Berkeley Open Infrastructure for Network
Computing (BOINC),” in Proc. ICCAIE, 2011, pp. 483-488

[17] C. B. Ries, C. Schröder, and V. Grout. “Generation of

an Integrated Development Environment (IDE) for Berkeley
Open Infrastructure for Network Computing (BOINC),” in
Proc. SEIN, 2011, pp. 67-76

[18] C. B. Ries and C. Schröder. “Public Resource Computing

mit Boinc.” Linux-Magazin, vol. 3, pp. 106-110, March 2011.
Internet: lmboinc.sourceforge.net

[19] C. B. Ries, T. Hilbig, and C. Schröder. “A Modeling Lan-

guage Approach for the Abstraction of the Berkeley Open
Infrastructure for Network Computing (BOINC) Framework,”
in Proc. IEEE-IMCSIT, 2010, pp. 663-670

[20] C. B. Ries, “UML 2 Statemachine for C++,”

https://sourceforge.net/projects/uml2stm4cpp/ [Online. Last
accessed: 2013]

[21] “Spinhenge@home.” http://spin.fh-bielefeld.de [Online. Last

accessed: 15th December 2012]

[22] Object Management Group. “OMG Unified Modeling Lan-
guage (OMG UML) Superstructure.” formal/2010-05-05,
May, 2010.

186

http://visualgrid.sourceforge.net/
http://libries.sourceforge.net/
http://libries.sourceforge.net/
http://spin.fh-bielefeld.de/

