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Abstract—This paper describes the verification process of the 
UML4BOINC stereotypes and the semantic of the stereotypes. 
Several ways enable the verification and this paper presents 

 
 

A. Approaches 

II. CODE GENERATION 

three different ways: (i) specifications of Domain-specific Mod- 
eling Languages  (DSMLs), (ii) the  use  of  C++-Models, and 
(iii) the use of Visual-Models created with Visu@lGrid [12], 

[17]. As a consequence, specific code-generators for the trans- 
formation of these models are implemented into applicable parts 
for a Berkeley Open Infrastructure for Network Com- puting 

(BOINC) project [1]. As for the  understanding  of how the 
transformation is realised, a brief introduction about the 
language-recognition and the way  how  code-generators can be 

implemented by use of ANTLR (ANother Tool for Language 
Recognition) [11] is given. This paper does not cover all 
transformations because most of them can vary, i.e. they 

depend on the target language (e.g. C++) and how tool-vendors 
handle semantic-models. In addition, steps three and four are 
realised within the research iterations of this paper. 
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I. INTRODUCTION 

 

Unning of a Berkeley Open Infrastructure for Network 

Computing  (BOINC)  project  can  be  a  very  time- 

consuming task. Despite the fact that it is necessary to im- 

plement a scientific application (SAPP) [19] and to establish 

a fully operable server infrastructure [17], moreover it is 

necessary to describe how SAPP and all BOINC components 

handle computational jobs. A SAPP has be implemented 

by developers and for individual projects several implemen- 

tations has to be repeated. By the help of UML (Unified 

Modeling Language) [22] one can cope this work by doing it 

with the help of a prominent visual programming language. 

The  idea  in  this  paper  is  to  have  UML  extension  (so- 

called stereotypes) and code-generator (CG), which have to 

support developers with the ability to generate all required 

implementation. 

Section II gives a briefly introduction how code generation 

works. Section III describes how the CG methodology in this 

paper is supported towards to fullfil the task of supporting 

BOINC developers by describing. In Section IV the support 

of state machine of the UML version 2.4 is scoped. An 

abstraction of BOINC’s SAPP and services is shown in the 

Sections V–X. In the last Section a conclusion is given. 

The code-generation (CG) generator-backend is often 

realised by one of the following three approaches [4]: 

Å Patterns: This approach allows specifying a search pat- 

tern on the model graph. A specific output is generated 

for every match. 

Å Templates: As the name suggests, code-files are the 

basis in the target language. Expressions of a macro 

language are inserted or replacement patterns are used 

for specifying the generator instructions. 

Å Tree-traversing: This kind of code generation ap- 

proach specifies a predetermined iteration path over the 

Abstract-syntax Tree (AST). Generation  instructions 

are defined for every node type or leaf and executed 

when a node or leaf is passed. 

These approaches can be combined. Accordingly, this paper 

applies a combination of the second and third approach, i.e. 

when the AST is created, the leafs of the AST are trans- 

formed into code-fragments and merged in existing template 

files. Fig. 1 shows the CG processing parts which are used; 

in particular seven parts supports the verification. Section III 

introduces the first part (1); the result of it allows the gener- 

ation of C++-code which is used to create semantic models. 

Such a  semantic model can be  created  in several ways: 

(3) with a Domain-specific Modeling Language (DSML) 

description, (4) as a direct C++ implementation based on 

the previous created semantic model and (5) as a visual 

description. These approaches end up in (6) and describe a 

BOINC project. The description is transformed in different 

parts which are relevant for BOINC,  e.g. configurations, 

implementations of services and scientific applications or 

the creation of workunits. For the steps between (1), (2), 

(6), and the creation of BOINC parts, the software library 

(7) libries is used [13]. 
 

B. ANother Tool for Language Recognition (ANTLR) 

ANTLR [11] is a parser generator used  to implement 

DSL interpreters, compilers and other translators, e.g. for 

the handling of specific configuration file formats. Two steps 
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Figure 1. Architecture of the CG process; different models are used to 
generate a BOINC project with its used components and configurations. 

 

 
are necessary for language recognition: lexical analysis and 

parsing [8]. Fig. 2 shows the general language recognition 

process. An input stream as 1 + 21 => res  consists of 

different bytes. This stream can be filtered by a lexer which 

splits the bytes into belonging tokens, based on an user- 

defined syntax or grammar: a number is defined as an INT  

(integer), the plus sign as ADD (addition) and => is used 

to assign (ASSIGN) ‘something’ to res , the underscores 

are whitespaces and are not recognized. The input stream 

is filtered and transformed into several tokens. Every token 

has its own meaning, e.g. ADD can be used to sum-up two 

integers. In addition, the chain of different tokens can have 

a different meaning (so-called semantic). The parser is used 

to interpret the tokens, i.e. either an optional AST can be 

created and analysed; a direct interpretation is possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.   General process description of language recognition. 
 

 
 

C. Abstract-syntax Tree (AST) 
 

Generally, an AST is an abstract representation of any 

formatted input or token stream; it is optional, a direct 

interpretation can be done. The AST is created by adding 

mapping rules directly to the syntax of the new language: 

m u l t i p l i c a t i o n :   v1 =INT   ’ ɣ  ’   v2 =INT >̨^(MUL  $v1  $v2 ) ; 

 

The operator - > introduces the tree construction rules. The 

body of the rule is a list where the first element is the 

node type (MUL) and followed by the child nodes which 

are the factors for the multiplication in this case [5]. By 

means of this approach two syntax trees are defined, i.e. an 

input syntax on the left-hand side and an AST-syntax on the 

right-hand side. 
 

D. ANTLR and the Extended Backus-Naur Form (EBNF) 

The EBNF (Extended Backus-Naur Form) is a syntactic 

metalanguage which is a notation for defining the syntax 

of a language through a set of rules. Each rule names a 

part of the language (called a non-terminal symbol of a 

language) and then defines its possible forms. A terminal 

symbol of a language is an atom that cannot be split into 

smaller components of the language [7]. The EBNF has a 

small set of syntax rules and ANTLR applies most of the 

EBNFs with modifications as shown in Table I. 
 

EBNF ANTLR 

‘a’ zero or once [a] a? 

‘a’ zero or more {a} a* 
‘a’ once or more a {a} a+ 
‘a’ or ’b’ a  b & a  b 
(‘a’ or ’b’) and ‘c’ (a  b) c & (a  b) c 

Table I 
EXCERP T OF THE EBNF’S AND  ANTLR’S S YNTAX [11], [7]. 

 

 
 

Fig. 2 shows a small summation (s1) of two integer values 

and an assignment to the variable res. The second summation 

(s2) allows unlimited summations, e.g. 20 + 22 + 222 => res. 

Listing 1 states the EBNF-syntax of this small command. 

Any token is defined in the last five lines, i.e. integers only 

consist of numbers. The last line defines whitespaces (WSs) 

and a special command forwards these characters to a hidden 

channel. 
 

s 1 :   INT  ADD  INT  ASSIGN  ID   ; 

s 2 :   ( INT   (ADD  INT ) ɣ   ASSIGN  ID ) +   ; 
 

ADD:           ’ + ’ ; 
ASSIGN :   ’ = > ’ ; 
INT :           ’ 0 ’ . . ’ 9 ’ + ; 
ID :   ( ’ a ’ . . ’ z ’ | ’ A ’ . . ’ Z ’ | ’ _ ’ ) 

( ’ a ’ . . ’ z ’ | ’ A ’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ _ ’ )  ɣ; 
WS:   ( ’   ’   | ’ \ n ’   | ’ \ r ’   | ’ \ t ’   ) +  { $ c h a n n e l =HIDDEN ; } ; 

Listing 1.   EBNF-syntax for the addition of two integers and assignment. 
 

Finally, the ANTLR syntax enables the direct AST creation. 

Listing 2 shows how the AST on the bottom right-hand side 

of Fig. 2 can be described. The ANTLR operator - > is used 

to map the EBNF-syntax to a valid AST-syntax. The result 

of this mapping and its dataset is shown in Fig. 3. 

s um m ation :   l e a f ɣ  >̨  l e a f  ɣ ; 
l e a f :   INT   ( ’ + ’  INT ) ɣ   ’= > ’  ID  >̨ 

^ ( ASSIGN  ^ (ADD  INT ɣ  )  ID ) ; 
 

Listing 2.   Definition of the AST of the summation. 
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Figure 3.   AST for the summation of unlimited integer values. 

 
 
E. Result 

Fig. 2 shows the parser during the language-recognition 

and with two outgoing transitions: (1) a direct transition to 

output and (2) a detour of AST creation are subsequently 

finished by an output generation. The  first  approach  is also 

called “embedded translation” because it populates the 

semantic model from the embedding code to the parser; 

it implements semantic model at appropriate points in the 

parse [5]. The use of an additional AST can be more explicit 

and easier to maintain [10]. 
 

III. GENERATION OF THE SEMANTIC MODELS 

The research for this paper required the implementation of 

different approaches, in order to verify and modify models in 

an iterative way. All models are based on an object-oriented 

hierarchy; the creation is supported by a self-defined DSML 

and allows a compact specifying of all necessary informa- 

tion: (i) datatype specifications, (ii) creation of enumerations, 

(iii)  classes  with  attributes and  methods, (iv) derivations 

of classes and (v) different kinds of associations between 

classes and their different multiplicities, i.e. compositions 

and aggregations. 

Listing 3 shows an example of the created DSML. Line 1 

specifies additional header files. Lines 2-3 indicate a map- 

ping of used datatypes within the DSML which are therefore 

mapped in the target’s programming language datatypes. 

Line 4 specifies an enumeration usable as a datatype. The 

last lines specify three classes: Project, Host and NIC. 

Project has one attribute name and one association to one 

or more Host instances. Host itself is a composition of one 

or more NIC instances. The CG produces setter and getter 

methods and routines automatically in order to check the 

multiplicities during the adherence of instances to associa- 

tions or compositions. Finally, every class gets a factory and 

destroyer functionality [6]. 

i n c l u d e s   {  " G e n e r a l . h "   } 

d a t a t y p e    S t r i n g " s t d : : s t r i n g " ; 
d a t a t y p e   I n t e g e r   " i n t " ; 
O p e r a t i n g S y s t e m [ U buntu =1 ,   U b u n t u S e r v e r = 2 ]  {  } 
P r o j e c t   {  name   :   S t r i n g   [ 1 ] ; 

a s s o c i a t i o n   h o s t s   :   H o s t   [ 1 . . ɣ  ] ; } 
H o s t {   c o m p o s i t i o n   n e t w o r k   :   NIC   [ 1 . . ɣ  ] ; 

/ /   a s s o c i a t i o n   :   NIC   [ 1 . . ɣ  ] ; } 
NIC            {   d e v i c e   :   S t r i n g   [ 1 ] ; 

i p v a l u e   :   S t r i n g   [ 0 . . 1 ] ; } 
 

Listing 3.   DSML description for the creation of a class-hierarchy. 

IV. 

GENERATION OF STATEMACHINES 

UML’s StateMachine package has been used for the 

research of this paper. There are some state machine imple- 

mentations for the combination with C++ [2], [3], [9] which 

are partly based on the UML specification. All of them 

are restricted in their use (e.g. no support for orthogonal 

regions, no entry and exit points). Concerning this, the UML 

2 Statemachine for C++ (UML2STM4CPP) [20] and UML’s 

StateMachine in version 2.4 support have been created and 

applied. UML2STM4CPP’s DSL Ries Statemachine (RSM) 

enables the creation of hierarchy state machine constructs. 

Fig. 4 shows a small state machine which is based on an 

initialisation state, choice state, two system states, and a final 

state. Listing 4 shows an excerpt of the DSL definition for 

this state machine. 
 

 
 

Figure 4.   UML Pseudostates with guarded and default transition. 

 
Listing 4 shows the DSL  definition  for  the  state machine  

in  Fig.  4.  The  state   machine  has   two   ar- eas:  (1)  

States{...}  defines  states  and   regions, and (2) 

Transitions{...}  defines transitions, guards and 

events between states and regions. The DSL defines all used 

nodes, e.g. decision node, initial node, action node, and final 

node. Finally, the DSL is an equipment with extra code 

anchors: 

Å <[onEntry  CODE- ]>  is executed on entering. 

Å <[ - CODE- ]>  is the main part. 

Å <[onExit  CODE- ]>  is executed on state’s leaving. 

The combination of these three anchors with the first anchor 

in lines 7-9 allows fulfilling the state machine with arbitrary 

behaviour. 

A n c h o r s  <[˛̨   # i n c l u d e   < T e s t e r . h> 

T e s t e r    t e s t e r ;   i n t   x;˛̨ ]> 
S t a t e m a c h i n e   P s e u d o s t a t e s   { 

S t a t e s   { 
I n i t i a l   S t a r t 
S i m p l e   P r o c e s s i n g 

<[ o n E n t r y   / ɣ   do  some   a c t i o n    ɣ/  ˛̨ ]> 
<[˛̨  t e s t e r . p r o c e s s i n g ( ) ;   ˛̨ ]> 

<[ o n E x i t / ɣ    do   some   a c t i o n    ɣ/  ˛̨ ]> 
S i m p l e   C l o s e 
F i n a l   End 

} 
T r a n s i t i o n s   { 

R :   S t a r t   [ t e s t e r . x ( )   ==  1 ] 
/   t e s t e r . s e t X ( 2 )  ==   P r o c e s s i n g 

R :   S t a r t   [ t e s t e r . x ( )   >  1 ] 
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/   t e s t e r . s e t X ( 3 )   ==  C l o s e 
R :   S t a r t   ==  End 
R :   P r o c e s s i n g   ==  End 
R :   C l o s e   /   t e s t e r . show ( ) ==  End 

} 
} 

 

Listing 4.   A UML2STM4CPP example of the state machine in Fig. 4. 

 
V. SCIENTIFIC APPLICATION 

BOINC offers an Application-programming Interface 

(API) for the procedural implementation of scientific ap- 

plications. UML is mainly an object-orientated specification 

and modelling approach. Generally, some tasks have to be 

done whenever a new scientific application (SAPP) has to be 

implemented. In order to avoid these incidents, an Object- 

orientated Programming (OOP) abstraction is implemented 

and set up on the top of BOINC’s API [14], [19]. Fig. 5 

shows the abstraction layers of this approach. The OOP 

layer provides a top-down approach where most of BOINC’s 

functionalities are merged in objects and used as building 

blocks, e.g. BOINC’s checkpoint mechanism is abstracted 

by the class Ries::BOINC::MVC::Checkpoint  [13]. 

The  biggest  issue  of  a  SAPP  is  the  computation’s  core 
 
 

 

  
 

 
 

Figure 5.   Object-orientated Programming layer for BOINC. 

 
which provides the “intelligence” and creates engineering 

or scientific results. Fig. 6 shows an excerpt of the OOP 

approach. In this case, two scientific applications are given: 

(i) LMBoinc [18] and (ii) Spinhenge [21]. In both cases, 

only  the  doWork  method  has  to  be  implemented.  The 

instantiation of the BOINC framework and the OOP layers. 

Main is instantiated by BOINC’s client and has access to 

the MVC::Handler  which provides information about the 

computation state. 
 

 
A. State Machine of a Scientific Application 

 

The fundamental idea of the state machine for the SAPP 

is to reduce the complexity based on the fact that only 

relevant functions are used for creating various state nodes, 

e.g. a state “Initialization” is used for initializing BOINC’s 

runtime environment or “Computing” is used for processing 

the core computation; thus, it will call doWork() . SAPP’s 

state machine possesses three Regions: 

Å R1 Is used for the handling of asynchronous-messages, 

Å R2 is used for the checkpointing process, and 

Å R2 specifies the computation of the SAPP. 
 

The Transitions of the processing states and the three regions 

can be triggered by external events and are able to call 

actions when they are used. 
 

 
B. Mapping of Activities and Actions 

 

Most of UML4BOINC’s stereotypes can be mapped di- 

rectly to BOINC’s API-calls or with less code-complexity. 

The current section illustrates how the CG from UML to 

implementation code can be done. 

1) «Atomic»: Atomic functions cannot be interrupted and 

have to be finished before subsequent actions or activities are 

executed. Listing 5 shows a small code-snippet. Line 2 opens 

and line 5 closes the atomic area; thus, any action or activity 

is called and cannot be interrupted between  these  calls. Fig. 

7 shows a UML model consisting of an atomic area. It 

executes an activity with an initialisation and final node and 

then executes the “transferMoney()” action. Exceptions 

cannot interrupt the execution. 
 

/ / /   S t a r t :  << A tom i c >> 

b o i n c _ b e g i n _ c r i t i c a l _ s e c t i o n ( ) ; 
t r a n s f e r M o n e y ( ) ;   / ɣ  . . .  ɣ/ 

b o i n c _ e n d _ c r i t i c a l _ s e c t i o n ( ) ; 
/ / /   End :  << A tom i c >> 

Listing 5.   Code-implementation example of BOINC’s atomic mechanism. 

 

 

 
Figure 6.   Object-orientated Abstraction of BOINC’s API. 

 
computation is called within Main and responsible for the 

 
Figure 7.   Code-mapping for UML4BOINC’s «Atomic». 

180 



                          The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

  Doi: 10.7321/jscse.v3.n3.28                e-ISSN: 2251-7545 

2) «Action» & type=#FractionDone: This type of «Ac- 

tion» is used in order to inform the BOINC client how much 

work has been accomplished. It is a value between zero and 

one, i.e. a percentage descriptor. The mapping of «Action» 

in BOINC’s API is a single line: boinc_fraction_done (fdone). 

fdone can be an input pin and requires a floating-point value 

(PrimitiveType::Real [22]) which has to be calculated by the 

scientific application developer. 

3) «Action» & type=#FileInfo:  It enables  querying in- 

formation of specific files. Listing 6 implements «File- 

Information» directly as a  C++-class,  namely  tag-values as 

attributes and the operations as methods. «Action» is 

mapped directly: (a) the input pin parameter path is used 

as query ’s parameter, and (b) the output pin finfo as a new 

variable which assigns the returning value of query . 
 

 
 

Figure 8.   «Action» to query file information. 
 

 
c l a s s   F i l e I n f o r m a t i o n   { 
p u b l i c : 
enum  F i l e K i n d   { Unknown =0 ,   F i l e =1 , 

D i r e c t o r y =2 ,   S y m l i n k = 3 } ; 
s t a t i c   F i l e K i n d   t y p e ; 
s t a t i c   s t d : : s t r i n g   cwd ,   a b s o l u t e P a t h ; 
s t a t i c   d o u b l e   f i l e s i z e  ,   d i r s i z e ; 
s t a t i c   d o u b l e   t o t a l S p a c e  ,   f r e e S p a c e ; 

 
s t a t i c   F i l e I n f o r m a t i o n   q u e r y ( c o n s t   ch ar   ɣp a t h )   { 

F i l e I n f o r m a t i o n   f i ; 
i f ( i s _ f i l e ( p a t h ) ) t y p e = F i l e K i n d : : F i l e ; 
e l s e   i f ( i s _ d i r ( p a t h ) )   t y p e = F i l e K i n d : : D i r e c t o r y ; 
e l s e   i f ( i s _ s y m l i n k ( p a t h ) ) 

t y p e = F i l e K i n d : : S y m l i n k ; 
e l s e t y p e =Unknown ; 
ch ar   b u f f e r [ 4 0 9 6 ]  =  { ’ \ 0 ’ } ; 
b o i n c _ g e t c w d ( b u f f e r ) ;   cwd  =   b u f f e r ; 
r e l a t i v e _ t o _ a b s o l u t e ( p a t h ,   b u f f e r ) ; 
a b s o l u t e P a t h   =   b u f f e r ; 
f i l e _ s i z e ( p a t h ,   f i l e s i z e ) ; 
d i r _ s i z e ( p a t h ,   d i r s i z e ) ; 
g e t _ f i l e s y s t e m _ i n f o ( t o t a l S p a c e  ,   f r e e S p a c e ) ; 
r e t u r n   f i ; 

the file “FileInformation.cpp”. The state of the lock/unlock- 

call is stored in the output pin state after the execution. 

When something goes wrong, an (exception named) Excep- 

tionLocking which can be caught and handled individually, 

will be raised. Every locking mechanism is only usable in 

its context. When a global lock has to be used for specific 

files, it is necessary to define its lock instance in a global 

way. 

 

 
 

Figure 9.   «Action» for locking/unlocking files. 

 
5) «Action» & type=#FileHandling: Fig. 10 and Fig. 11 

show how UML modelling can be realised when 

UML4BOINC’s «Action» and type=#FileHandling are used. 

«Action»’s characteristic is specified by the input pin mode; 

it states how many input pins  can  exist  in  one  action. The 

notes in Fig. 10 and Fig.  11  describe  the  modes with one 

and two additional input pins. These actions and individual 

characteristics can be directly transformed into C++-

implementations. Table II shows the related mapping of 

mode’s value to the suitable BOINC API-call. This is a 

trivial approach and some modes can need more specific 

implementation, e.g. the mode Open can be used for virtual 

filenames or/and for filenames with immediate access. In 

case the filename is a virtual name, it is necessary to resolve 

the physical filename. Listing 7 shows a general approach for 

file opening. Various problems can arise when the file is in a 

specific file format, e.g. it is a ZIP-archive and the opening 

differs from mentioned approaches. Opening approaches can 

be handled directly by the CG or implemented in the OOP 

abstraction layer. In this regard, CG is mostly a tool-specific 

task and can be handled in different ways. 
 

s t d : : s t r i n g   i n p u t D a t a I n ; 

b o i n c _ r e s o l v e _ f i l e n a m e _ s ( p a t h ,   i n p u t D a t a I n ) ; 
i n t   r e s  =  b o i n c _ f o p e n ( i n p u t D a t a I n  ,   f i l e m o d e ) ; 

 
Listing 7.   General code-implementation for file opening. 

} 
} ; 
/ ɣ    . . . i n i t i a l i s e   d e f a u l t   v a l u e s !    ɣ/ 

i n t   main ( i n t   a r g c ,   ch ar  ˠɣ  a r g v )   { 
F i l e I n f o r m a t i o n   f i n f o   = 

F i l e I n f o r m a t i o n : : q u e r y ( " F i l e I n f o r m a t i o n . cpp " ) ; 

/ ɣ  . . .  ɣ/ 
} 

 

Listing 6.   «FileInformation» and «Action» for file information queries. 
 

4) «Action» & type=#Locking: BOINC provides a func- 

tionality of preventing access to specific files, i.e. the 

BOINC-structure FILE_LOCK is used for locking and un- 

locking a file. Every file needs its own locking instance. 

Fig. 9 shows «Action» with one input pin to lock/unlock 

 
 
 

Figure 10.   «Action» for file handling with two parameters. 

 
6) «Action» & type=#TrickleDown: Asynchronous- 

messages are not handled immediately. The SAPP is 

responsible  for  collecting  all  messages.  The  collection 
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Mode BOINC’s Function Call 

one additional input pin 

Touch int res = boinc_touch_file ( path ) ; 
Delete int res = boinc_delete_file ( path ) ; 
Mkdir int res = boinc_mkdir(path) ; 
Rmdir int res = boinc_rmdir ( path ) ; 
Cleandir int res = clean_out_dir ( path ) ; 

two additional input pins 

Copy int  res  = boinc_copy(path , newpath); 
Chown int  res  = boinc_chown(path, owner); 
Rename int  res  = boinc_rename(path, newpath); 
Open FILE rɣes = boinc_fopen(path ,  filemode ) ; 

 

 
 

Figure 12.   Code-mapping for UML4BOINC’s «TrickleUp». 

 

Figure 11.   «Action» for file handling with three parameters. 
 

 
ch ar  msgUp [ 1 0 2 4 ]  =  { ’ \ 0 ’ } ; 
s n p r i n t f ( msgUp ,   1 0 2 4 , 

" < t o >%s < / t o > \ n< from >%s < / from > \ n<msg>%s < / msg > \ n " , 
m e s s a g e F i e l d s [ 0 ] , 
m e s s a g e F i e l d s [ 1 ] , 
m e s s a g e F i e l d s [ 2 ] 

} 

 
 
 
 
 
 

Table II 

MAP P ING OF UML TO BOINC’S API. 

 
 
 

process can be done in the first region of the state machine. 

The messages are provided by the output pin of «Action». 

Listing 8 shows the receiving  of trickle-messages and a 

suggestion for handling them. 

ch ar   t r i c k l e F i l e n a m e [ 3 2 ]  =  { ’ \ 0 ’ } ; 

i n t   r e t v a l   =  b o i n c _ r e c e i v e _ t r i c k l e _ d o w n ( 
t r i c k l e F i l e n a m e ,   3 2 ) ; 

FILE   ɣt r i c k l e F i l e   =  b o i n c _ f o p e n ( t r i c k l e F i l e n a m e ,   " 
r " ) ; 

i f ( t r i c k l e F i l e )   { 

/ / /   ( 1 )   r e a d   i n   t h e   t r i c k l e m̨ e s s a g e   c o n t e n t 
/ / /   ( 2 )   p a r s e   t h e   c o n t e n t 
/ / /   ( 3 )   c r e a t e   a   s p e c i f i c   T r i c k l e M e s s a g e   i n s t a n c e 
/ / /  and   f i l l    t h i s   i n s t a n c e   w i t h   c o n t e n t   o f 

t h e   m e s s a g e 

i n t   r e t   =   b o i n c _ s e n d _ t r i c k l e _ u p ( 
( ch ar ɣ  ) v a r i e t y ,   msgUp ) ; 

i f ( r e t )   {   / ɣ    E r r o r h̨ a n d l i n g ,    . . .    ɣ/   } 
 

Listing 9.   Trickle-message handling on the client-side. 
 

Listing 10 shows how the set-up for activating message 

handling has to be done by programming when on client- 

side. The handling can be activated during the initialisation 

of the SAPP, i.e. in the state “Initialization”. Section  X 

describes the server-side. 
 

i n t   main ( i n t   a r g c ,   ch ar  ˠɣ  a r g v )   { 
BOINC_OPTIONS  o p t i o n s ; 
o p t i o n s . h a n d l e _ t r i c k l e _ u p s   =  t r u e ; 
o p t i o n s . h a n d l e _ t r i c k l e _ d o w n s   =  t r u e ; 
i n t   r e t u r n V a l u e   =   b o i n c _ i n i t _ o p t i o n s (& o p t i o n s ) ; 
. . . 

} 
 

Listing 10.   Enabling of BOINC’s asynchronous-messages on clients. 
 

8) «Timing»: Periodically executed  function-calls  can 

be implemented in  a SAPP, e.g. to  calculate an  average 

value  or  to  handle  input-/output  calls.  BOINC  provides 

a mechanism which enables adding of specific functions. 

Accordingly, a function can be used as callback-function 
by  BOINC’s  internal.  UML4BOINC  specifies  «Timing» 

} 

Listing  8. Approach  of  how  the  trickle-message  handlers  can  be 
implemented on the client-side. 

7) «TrickleUp»: Fig. 12 shows UML4BOINC’s stereo- 

type «TrickleUp» for sending messages from every host 

to a BOINC project. Generally, this stereotype can only 

be used by clients. Listing 9 shows an example of how 

the stereotype can be implemented. A vector container for 

storing string values is defined and provides the planned 

content of the message which is created in lines 5-10. The 

sending itself is done in line 11. The stereotype does not 

provide an output pin for handling the return value of the 

sending function. Thus, it is  checked in order to enable 

error treatment. However, the reception of messages and 

their handling on the server-side require more work. Thus, 

the content of the message must be parsed and handled 

individually. 

s t d : : v e c t o r < s t d : : s t r i n g >  m e s s a g e F i e l d s ; 

/ ɣ    . . .  f i l l   m e s s a g e F i e l d s   w i t h   d a t a !    ɣ/ 
i f ( m e s s a g e F i e l d s . s i z e ( )   >=  3 )   { 

in order to add several different function calls as shown 

in Fig. 13. Only «Timing» has to be added to BOINC’s 

callback mechanism. Listing 11 shows how the generated 

code can look like. The first three lines are dummy imple- 

mentations and can be replaced by more complex action 

flows. The last execution is compared to its  individual delay 

value  (Line 5) by timingFunction . When the current 

time possesses less than the last timingMoments  value 

plus the timingDelays  value, then the action is 

executed. This implementation approach does not allow 

executing the three functions in an orthogonal way. Finally, 

the timingFunction  has to be registered for execution 

within BOINC’s runtime environment and this is done in 

line 29. 
 

v o i d   C h e c k p o i n t i n g ( )         {   / ɣ  . . .  ɣ/   } 
v o i d  c a l c u l a t e A v e r a g e ( )   {   / ɣ  . . .  ɣ/   } 
v o i d   c a l c u l a t e M e d i a ( )       {   / ɣ  . . .  ɣ/   } 

 
i n t   t i m i n g D e l a y s [ ]     {   1 5 ,   5 ,   30   } ; 

i n t   t i m i n g M o m e n t s [ ]   {     0 ,   0 ,     0   } ; 

182 



                          The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

  Doi: 10.7321/jscse.v3.n3.28                e-ISSN: 2251-7545 
 

 
 

Figure 13.   Code-mapping for UML4BOINC’s «Timing». 
 

 
 

FUNC_PTR  t i m i n g F u n c t i o n s [ ]   { 
C h e c k p o i n t i n g  ,   c a l c u l a t e A v e r a g e  ,   c a l c u l a t e M e d i a 

} ; 
 

v o i d   t i m i n g F u n c t i o n ( )   { 

s t a t i c   b o o l   f i r s t R u n   =  t r u e ; 
i f ( f i r s t R u n )   { 

f o r ( i n t   i = 0 ;   i < 3 ;   i ++) 
t i m i n g M o m e n t s [ i ]  =  t i m e (NULL ) ; 

f i r s t R u n   =   f a l s e ; 
} 
f o r ( i n t   i = 0 ;   i < 3 ;   i ++)  { 
i n t   t i m e E d g e  =  t i m i n g M o m e n t s [ i ] + t i m i n g D e l a y s [ i ] ; 

i f ( t i m e E d g e   >  t i m e (NULL ) ) 
c o n t i n u e ; 
( t i m i n g F u n c t i o n s [ i ] ) ( ) ; 
t i m i n g M o m e n t s [ i ]  =  t i m e (NULL ) ; 

} 
} 

 
i n t   main ( i n t   a r g c ,   ch ar  ˠɣ  a r g v )   { 

b o i n c _ i n i t ( ) ; 
b o i n c _ r e g i s t e r _ t i m e r _ c a l l b a c k ( t i m i n g F u n c t i o n ) ; 

 
/ /   Keeps   t h e   a p p l i c a t i o n   r u n n i n g . . . 
f o r ( i n t   i = 0 ;   i < 6 0 0 ;   i ++)   s l e e p ( 1 ) ; 

} 
 

Listing 11.   «Timing» & «TimingFlow» and their embedded actions. 
 

9) «WaitForNetwork»: Fig. 14 shows the two outgoing 

transitions. Listing 12 shows an approach of how «Wait- 

ForNetwork» can be implemented. The structural feature 

is directly created in lines 2-7. The true-guarded transition 

is implemented by lines 12-13, and the false-guarded by 

lines 15-16. 
 

/ / /   S t a r t :  << W a i t F o r N e t w o r k >>  
# d e f i n e   TRIES  10 
b o i n c _ n e e d _ n e t w o r k ( ) ; 
b o o l   n e t a v a i l a b l e   =   f a l s e ; 
f o r ( i n t   _ t r y = 0 ;   _ t r y   <  TRIES ;   _ t r y ++)  { 

n e t a v a i l a b l e   =  ( b o i n c _ n e t w o r k _ p o l l ( ) ? t r u e : f a l s e ) ; 

 

 
 

Figure 14.   «WaitForNetwork» to query network connectivity. 

 
 

VI. SERVICES 

Services are only present on the server-side of a BOINC 

project; it needs information about the individually services: 

firstly, the location of the executability, its parameters for 

starting, and whether it is enabled or disabled; secondly, 

the application itself has to be implemented or a pre- 

implemented version has to be installed. The services are 

modelled within the (a) Infrastructure and (b) Application 

diagrams; in case the service is a task the (c) Timing diagram 

is also relevant. This part is covered by additional work [16]. 
 

VII. WORK 

BOINC’s work processing is based on a small state-chain, 

namely start Ÿ creation Ÿ processing Ÿ validation Ÿ 

assimilation Ÿ end  [15]. Fig. 15 shows how series and 

workunits can be modelled by a visual approach provided by 

Visu@lGrid [12], [17]. Different series can be created within 

Work branch (1). Every series contains a direct description 

of the used workunit, the input and output files. Any file can 

have individual datafields to set-up the runtime parameter 

for the computation. The visualisation (2) shows the series 

with input/output files. images.zip is a physical file which 

can be added manually or dynamically in this case and by 

the use of «InterfaceDataSource». (3) and (4) show how the 

relation between the first four series and a fifth serie can be 

described. A detailed explanation can be found in additional 

work [15]. 

} 
/ / /   End :  << W a i t F o r N e t w o r k >>  

 
i f ( n e t a v a i l a b l e )   { 

/ / /   T r a n s i t i o n :   [  t r u e ]  
s t d : : c o u t   <<  "  NETWORK"  <<   s t d : : e n d l ; 

}   e l s e   { 
/ / /   T r a n s i t i o n :   [  f a l s e ]  
s t d : : c o u t   <<  "  NO NETWORK"  <<   s t d : : e n d l ; 

} 
 

Listing 12.   «WaitForNetwork» to query network connectivity. 

 
 

Figure 15. Visual modelling for the specification of BOINC workunits; The 
Series and the relation among themselbes can be modelled with associations 
between input and output files. 

 
 

VIII. WORK VALIDATION 

Workunit specifications state on the one hand how out- 

put files have to be opened and on the other hand how 

the «InterfaceValidate» can be used. It provides access to 
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the output files for validation processes. Thus, the inter- 

face «InterfaceDataset» provides an universal way to open 

these output files. BOINC’s validation framework exists on 

a high-level and low-level abstraction [14, Section  9.3]. This 

paper  covers  only  the  high-level  abstraction  which is 

based on three steps: (i) initialisation, (ii) comparing, and 

(iii) cleanup. Only the second step has  to be filled with 

functionality for a successful validation. As shown in Listing 

13, the result has to be stored in the fifth parameter: 

(a) false or  (b) true, i.e. the computational result is  not 

valid or is valid. The first & second and third & fourth 

parameters are used to handle the result files and result raw 

datasets. Fig. 16 shows how the Listing 13 can be modelled 

in UML by use  of  a  UML  Activity.  The parameters of the 

function compare_results  are modelled as UML 

ParameterNodes. The comparing statement in line 4 is 

transformed into a UML DecisionNode and two outgoing 

transitions with equipment guards. These guards are the real 

validation parts and decide whether the computational results 

are valid  or  not, i.e. the output UML ParameterNode is 

valued with false or true. This approach can be added to 

the UML StateMachine and extended by «Validation». 

i n t   c o m p a r e _ r e s u l t s ( RESULT &  r 1 ,   v o i d   ɣd a t a 1 , 

RESULT &  r 2 ,   v o i d   ɣd a t a 2 , 
b o o l  &  m atch )   { 

m atch  =  ( r 1 . c p u _ t i m e   >=  10  &&  r 2 . c p u _ t i m e   >=  1 0 ) ; 
r e t u r n   0 ; 

} 
 

Listing 13.   Part of BOINC’s high-level validation framework. 

can be extended by ports in order to use file-directories or 

database tables for storing. 
 

X. ASYNCHRONOUS MESSAGES 

This section gives an example of how asynchronous- 

messages can be transformed into code and by use of the 

relevant UML4BOINC stereotypes on server-side. When 

asynchronous-messages are used on both sides, the message 

handling must be enabled in any case on server- and client- 

side. On the server-side a specific XML configuration has 

to be set. 
 

A. Server-Side Handling 

BOINC provides a default implementation for the han- 

dling of asynchronous-messages (AMs), i.e. a kind of ping- 

pong system. This examplary application iterates over a 

BOINC database table and queries unhandled AMs. The 

queried messages are processed by a specific function and 

therefore named handled_trickle(DB_MSG_FROM_ -  

HOST&). The parameter is the database entry and contains 

information about the sender and the message send which 

is text-based. Fig. 17 shows how an AM is specified by 

UML4BOINC. «TrickleMessage» specifies a chat message 

and contains one message value which is defined by three 

additional datafields: (i) to, (ii) from, and (iii) msg. This 

chat message has one receiver: C.B.Ries. The specification 

is not always available during runtime. Chat messages are 

transmitted primarily from users; the  specification  does not 

possess any  association to receivers at this moment, only 

textual information about the planned receivers. The 

association is created on server-side when message receivers 

are queried from the user database of a BOINC project. 

Fig. 18 shows this detail through another viewpoint. One 

user transmits the «TrickleMessage» 1: chatMessage01 to 

the BOINC project. The message contains only a description 

of the targeting message’s receivers. The «TrickleMessage» 

1.1: chatMessage02 has a different format. messageFields 

has modified the information into an absolute information 

of the targeting receiver.  The replacement of the targeting 
Figure 16.   Part of BOINC’s high-level validation framework in UML. 

 
IX. WORK ASSIMILATION 

The «InterfaceAssimilate» can be used for the assimilation 

of computational results. It provides access to output files 

and then enables interface «InterfaceDataset» to open the 

output files. BOINC’s assimilation framework provides a 

function which has to be filled with assimilation routines, 

i.e. by use of the standard implementation or an own spec- 

ification and how output files and results have to be stored. 

Generally, BOINC’s framework provides two targets for 

storing: (i) storing in a specific file-directory and (ii) storing 

in a database. The destination of storing is specified within 

the CG process and by the Infrastructure diagram. The 

infrastructure specification contains an «Assimilator» which 

 
 
 
 
 
 
 

Figure 17.   Instantiation of the stereotypes for asynchronous-messages. 

 
receiver information needs to be handled on the server-side. 

Additional UML Actions can be specified for this case; it is 

not done in this research. Listing 14 shows the pseudocode 

of the relaying mechanism for chat messages on the server- 

side. Information of the received message is filtered: (i) the 

sender host, (ii) the sending user, and (iii) the names of 
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Figure 18.   Asynchronous-messages within a BOINC project. 

 
 

the target users. The received message is parsed into the 

format for the targeting users in the next step. Thus, the 

message is send to all hosts of an user and accordingly to 

every workunit. As a matter of fact, BOINC’s AMs need 

the information about the workunit and which message has 

to be handled. When a message shall target a specific user, 

the sender can not forsee when and where it will be read 

by the receiver. According to that, the server sends it to all 

workunits. 

h a n d l e _ t r i c k l e (MSG_FROM_HOST&  mfh )   { 
h o s t F r o m  =    HOST ( mfh ) 
u s e r F r o m  =    USER( mfh ) 
u s e r s T o =  USERS ( mfh ) 

 
m  =  MAP_RECEIVED_MSG_TO_SEND_MSG( mfh ) 

 
do   u s e r  =  S e n d _ M e s s a g e _ t o _ U s e r s ( u s e r s T o ) 

do   w o r k u n i t  =  S e n d _ M e s s a g e _ t o _ W o r k u n i t ( u s e r ) 
SEND_MESSAGE( w o r k u n i t ,  m) 

done 
done 

} 
 

Listing 14.   Pseudocode for the trasnfer of chat messages between users. 
 

Listing 14 shows how little UML Action is  needed  in order 

to implement the pseudocode. It requires five actions and 

additional structural activities, i.e. a for-loop or do- while 

loop can be used to iterate over all datasets. Fig. 19 shows 

how this can be realised through UML. The received 

message is specified as a UML ObjectNode and used as 

input value for the three UML Actions: (i) HOST, (ii) USER 

and (iii) USERS. The first two are not used in this example. 

The third action is used in order to filter all users and query 

the information from the database. The user information 

is parsed to the first iterative element which consequently 

iterates over all users. The individual users are parsed to the 

second iterative; it enables an iteration over all workunits 

of the specific users. Finally, a pre-parsed message is send 

to a specific user’s workunit.  The  handling  of  AMs  is less 

complex on the client- than on the server-side. The client 

only receives and transmits messages from and to a BOINC 

project. It must not query any other information from a 

database. The Transmission of AMs is provided by 

«TrickleUp» and the reception is supplied by «Action». 

 

 
 

Figure 19.  UML modelling for asynchronous-messages on the server-side. 

 
 

XI. CONCLUSION 

This paper presented a CG approach for the transforma- 

tion of UML4BOINC’s stereotypes into an implementation. 

At first, different CG approaches have been introduced 

followed by examples of language recognition with ANTLR. 

Subsequently, the direct transformation of models into exe- 

cutable code demonstrates how an AST can be used for CG. 

In addition, it has been exemplified how a semantic model 

can be generated automatically through a specific DSML. 

Accordingly a DSML named RSM has been introduced; 

it enables the creation of a state machine which is based 

on a scientific application. Secondly, an object-orientated 

abstraction of BOINC’s API has been presented briefly. 

However, the CG transformation is not based on strict rules. 

Developers can decide how they implement its BOINC parts 

and scientific applications. 
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