
A Modeling Language Approach for the
Abstraction of the Berkeley Open Infrastructure for

Network Computing (BOINC) Framework
Christian Benjamin Ries

University of Applied Sciences Bielefeld
Computational Materials Science & Engineering

Wilhelm-Bertelsmann-Str. 10,
33602 Bielefeld, Germany

Christian_Benjamin.Ries@fh-bielefeld.de

Thomas Hilbig, Christian Schröder
University of Applied Sciences Bielefeld

Computational Materials Science & Engineering
Wilhelm-Bertelsmann-Str. 10,

33602 Bielefeld, Germany
{Thomas.Hilbig, Christian.Schroeder}@fh-bielefeld.de

Abstract—BOINC (Boinc Open Infrastructure for Network
Computing) is a framework for solving large scale and complex
computational problems by means of public resource computing.
Here, the computational effort is distributed onto a large number
of computers connected by the Internet. Each computer workson
its own workunits independently from each other and sends back
its result to a project server. There are quite a few BOINC-based
projects in the world. Installing, configuring, and maintaining a
BOINC based project however is a highly sophisticated task.
Scientists and developers need a lot of experience regarding the
underlying communication and operating system technologies,
even if only a handful of BOINC related functions are actually
needed for most applications. This limits the application of
BOINC in scientific computing although there is an ever growing
need for computational power in this field. In this paper we
present a new approach formodel-based developmentof BOINC
projects based on the specification of a high level abstraction
language as well as a suitable development environment. This
approach borrows standardized modeling concepts from the well-
known Unified Modeling Language (UML)and Object Constraint
Language (OCL).

I. I NTRODUCTION

V OLUNTEER computing technologies allow to realize
low-cost high-performance computing projects in certain

application areas. A very prominent framework based on the
principle of Public-Resource Computing (PRC) is BOINC
(Boinc Open Infrastructure for Network Computing). BOINC
provides an Application Programming Interface (API) with
about one hundred functions of different categories, e.g.
filesystem operations, process controllingand status message
handling [1], [2]. A few of the most important functions
are listed in sectionI-B. PRC is based on a server-client
communication infrastructure mechanism. Here, the client
retrieves a project specific application from the server along
with a so-called workunit, i.e. a number of parameters usually
provided in data files of simple ASCII or binary format that are
optionally needed by the application to perform a specific task.
BOINC is strongly focused on autonomic applications, each

This project is funded by the German Federal Ministry of Education and
Research

BOINC project has its own server, applications and tasks. The
client executes the application, i.e. performs the calculations
and sends its results back to the server which assembles these
into a “global” result or stores these results at specific places.

The setup of a BOINC project heavily relies on the use of
file-based scripting techniques. For instance, the programming
languagePython is utilized for the creation of a standard
BOINC server infrastructure with database initialization, web-
site and administration interface configuration and an optional
BOINC test application. A few scripts are implemented using
GNU BASH to sign executable files with encryption keys
and yet another script uses the C shell (csh) to monitor
network traffic. Extensible Markup Language (XML) files
are used for the runtime server configuration.All files have
to be editedmanually by the project developer, scientist or
administrator which bears the risk of making a large number
of typical errors. For example, wrong spelling of parameter
names or simulation relevant values as shown inI-A would
have a significant effect on the system’s integrity and the
application’s performance [8]. One way to cope with these
problems is to provide a tool support which allows to automate
the manipulation, generation, and checking of all necessary
scripts.

In this paper we discuss a model-based approach for the
development of BOINC projects that makes it possible to
implement application specific changes while always keeping
a valid configuration of the BOINC infrastructure. We give
an idea on how to create a proper high-level domain specific
language (DSL) in order to develop and maintain a complete
BOINC application. This DSL forms the basis of an easy-
to-use programming environment along with a high-level
programming language and a suitable development process.
Additionally, we present a way to model a complete BOINC
installation including the client application for different target
computer architectures and processor types. Aspects of single-
and multicore processor units (CPU) and graphics processing
units (GPU) are also discussed.



A. Typical errors during the BOINC server configuration
process

The following list shows examples of typcial errors that can
occur due to manual editing of the BOINC server configuration
files. As a consequence of these errors one can expect a
significant effect on the system’s integrity and application
performance.

• uldl_dir_fanoutis the parameter that contains the number
of subdirectories inside the upload and download directo-
ries on the server computer. A wrong value set here may
dramatically slow down the system’s server performance
because of too many hard disk drive accesses.

• shmem_keynames the allocated memory that is needed
for the interprocess communication (IPC) between all
BOINC applications on every BOINC project server. It is
required that this value is unique, never changed during
the runtime and is used by all BOINC server applications.

• msg_to_hostmust be included in the BOINC server con-
figuration to enable sending of trickle-down messages1 to
the BOINC client nodes.

• tasksdescribes a set of parameters for applications which
should execute in a cycle period, i.e. a crontab. Suitable
values are needed to avoid problems like extremely large
logging files or a outdated statistics, i.e. how many
workunits are left for working or have errors during the
computation.

• daemoncontains a set of command descriptions. It is
useful to start more than one daemon process to get
a good load balancing of user requests, e.g. when the
BOINC projects are much in demand.

One of our goals is the automatic determination of these most
important parameters for different target computer architec-
tures and processor types [20].

B. The BOINC Application Programming Interface

BOINC offers few example applications in which the num-
ber of lines of code range from38 to 308. The first one only
includes some elementary functions and no BOINC specific
commands, e.g. a for-loop which just keeps the processor busy
for one second. The second one is a more useful example since
it contains BOINC specific function calls, e.g. how to retrieve
the name of the checkpoint file or the actual processing state.
Implementing a complex scientific application using BOINC
is far more complicated and requires a broad experience of
the developer. However, one can show that only23 different
BOINC functions are necessary to create a successfully run-
ning research relevant distributed computing application[23],
[21].

II. STATE OF THE ART

Model-driven engineering (MDE) is becoming the domi-
nant software engineering paradigm to specify, develop and

1Trickle messages are asynchronous, ordered, and reliable messages be-
tween the BOINC server/clients and let applications communicate with the
server during the execution of a workunit.

Fig. 1. Logical packages and dependencies of the BOINC functionalities

maintain software systems. For example, Brunelièreet al.
[6] propose aModeling as a Service(MaaS) initiative for
cloud computing projects with an emphasis on topics like
scalability, tool interoperability, and the definition of modeling
mash-ups as a combination of MDE services from different
vendors. Moreover, the definition of domain-specific languages
(DSL) [10], [26], [27] along with the development of tools
which support the developer during the DSL conception [9],
[17], [26] are currently under investigation. However, none of
the above mentioned approaches is related to public resource
computing nor can it be directly used for the modeling process
of BOINC projects. In the following chapters we therefore
propose a first modeling language approach for the abstraction
of the BOINC framework.

III. A BSTRACTION OF THEBOINC FRAMEWORK

The BOINC framework offers many very useful function-
alities that help the developer to create his application. As a
first step towards our modeling language approach we have
subdivided the BOINC functionalities into different logical
packages as shown in Fig.1. Each package contains functions
that cover a specific aspect during the development process
[22] and can be used independently from functions of other
packages which minimizes the number of dependencies. The
whole BOINC project including the server installation compo-
nents and application specific implementations is contained in
the packageProject. This package directly depends on the
packagesServer and Application. The packageApplication
contains all application specific implementations and depends
on the following child packages:

• Events- This package describes the abstractions for all
possible events that can occur during the execution, e.g.
exceptions like’File not found’ or ’Segmentation fault’.
It contains routines for clearly defined error handling.

• Actions - Every execution statement is gathered within
this package including wrapper routines to call third-
party applications, i.e Matlab, or other domain-specific
simulation tools.

• Dependencies- All libraries that are needed for the whole
project are contained in this package. This includes the
BOINC libraries as well as application specific runtime
libraries and external sources.



• Communication- This package includes the BOINC core
client component which is the interface between the
client installations and project servers and performs the
information exchange between them.

• Configurations- In this package one keeps all system
relevant parameters coded in XML files.

The complete server installation and maintenance process
is provided by the packageServer. This package describes the
relationships between all components of a complete BOINC
server installation, i.e. all configuration files, a list of the
parameters for the workunits, description of installed applica-
tions with the corresponding architecture and processor targets.
The packageServerimports its required information from the
contents of theConfigurationsandCommunicationpackages.

IV. T HE MODELING LANGUAGE APPROACH FOR THE

ABSTRACTION OFBOINC

Nowadays, models and model-based techniques are the
fundamental means by which engineers are able to cope with
otherwise unmanageable complexity and reduce design risk.
In particular, software models have the distinct advantagethat
they can beevolvedfrom high-level views of possible designs
into actual implementations.

TheUnified Modeling Language (UML)– a widely adopted,
widely supported and customizable industry standard – plays
a key role in modern software development. With the pos-
sibility of creating standardized UML profiles it provides
the fundamentals for a true engineering-oriented approachto
the construction of software. That is, system models can be
used to understand and assess designs and predict design
risks in meaningful (e.g., quantifiable) ways. Full automatic
code generation from UML models facilitates preservation of
proven model properties in the final implementation.

In our approach to a model-based development of BOINC
projects we focus on the use of quasi standard software
tools available within the Eclipse development environment.
These tools enable us to develop all necessary components,
like diagram editors, including graphical representations of
modeling elements, code generators, etc. in one and the same
development environment. Specifically, the code generation
should be realized using a template engine which could also
be used to generate important documentation files.

A. Graphical modeling environment

Throughout our project we exclusively use the Eclipse
Modeling Framework (EMF) as released by the Eclipse Model
Development Tools (MDT) project [26]. A detailed description
of all components can be found in [9]. A key feature of
our approach is the definition of a suitable standardized
UML2 profile [22]. Here, we make use of the EMF-based
implementation of theUML2 and UML2 Tools subproject.
EMF specifically allows implementing of constraints based on
the Object Constraint Language (OCL) [18].

Fig. 2 gives an overview about a simplified modeling
process. Here, the developer uses graphical modeling elements
within diagrams to design an application as described in Sec.

Fig. 2. Simplified view of the modeling process

Fig. 3. Example flowchart diagram for instruction sequences.

IV-B below. For a more detailed modeling of the application
logic the developer is required to use a textual DSL as
described in Sec.IV-D. The Graphical Model will be im-
plemented using the Graphical Modeling Framework (GMF).
GMF includes EMF, the Graphical Editing Framework (GEF)
and Draw2D. GEF is a framework built upon the Model-View-
Controller (MVC) pattern and handles the view and logical
components with own instances. The controller handles the
logic between these instances. TheTextual Modeland the
Graphical Modelare synchronized, i.e. every change in one
of the models causes changes in the other one and each model
will automatically be adjusted. Both models will be trans-
formed into one (yet to be defined) so-calledVisualGridML
Genmodel. This can be done by exploiting the model-to-
model transformation framework Query/View/Transformation
(QVT). The QVT operation mapping language is capable
of dealing with multiple input and output models and also
supports OCL statements.

One of the key issues of our approach is to define a proper
VisualGridML Genmodel. The VisualGridML Genmodelcan
be exported into different other formats, e.g. XML, XML
Metadata Interchange (XMI), or Ecore. TheVisualGridML
Genmodelwill only be generated when the previously created
models are valid. In order to support the developer during the
verification and validation process adequate error messages
and output comments will be created.

B. Graphical modeling elements

The proper definition of suitable graphical modeling ele-
ments is vital for our modeling language approach for the



Fig. 4. Interprocess Communication within a BOINC application

abstraction of BOINC. In the following we present some
examples along with sample modeling fragments. Fig.3 shows
a flowchart of a high-level description of instruction sequences.
The graphical notation is adapted from the UML2 flowchart
definition [17, Fig. 12.36].

Fig. 3 shows an example that uses seven graphical modeling
elements. As mentioned above these modeling elements are
defined in theActionspackage and have the following meaning
[22]:

• Start, which describes the entry point of an application.
• Stop, which defines the end of execution, i.e. after that

no other instructions will be executed and the application
will shut down.

• Action is a modeling element which can execute native
C/C++ instructions.

• Decisiondescribes anif-else condition.
• Join merges two or more subdivided instruction se-

quences.
• Executeexecutes external C/C++ functions which are

implemented in header and source files.

In Fig. 4 we show an adapted version of a UML2 col-
laboration diagram [17, Tab. 9.1, 9.2]. The dashed rounded
rectangle on the right hand side specifies a shared data space.
This data space is defined using one ore more port descriptors.
Different ports could include different data descriptionsand
could also be connected with different so-called handlers.The
three elements on the left hand side are examples of such
handlers. Each handler handles a specific functionality andis
connected with one application implementation. This example
contains handlers for theBOINC Core Client2, a scientific
application, and a component for a screensaver session [1].
The handler can have only one data port. Data ports can only
be connected to data ports of shared data space. Connections
between ports may also be named as shown in this example.

In Fig. 5 we show an adapted version of a UML2 Use-
Case diagram [17, Fig. 16.10] which contains elements of the
Configurationpackage [22]. The elements on the left hand side
are the actors for the use cases of the right hand side. The use
cases contain a reference to predefined functions which can be
modeled with a flowchart diagram. The dashed line connects
the use cases with the appropriate actor and defines the type of
execution. The lower actor describes the BOINC server which

2The BOINC Core Client communicates with schedulers, uploads and
downloads files, and executes and coordinates applications.

Fig. 5. Elements for configuration purpose

could be a cronjob. The upper actor describes a user. In this
example the user defines workunits.

C. Aspect-Oriented Programming and Feature-Oriented Pro-
gramming

Aspect-Oriented Programming (AOP) aims at separating
and modularizing cross-cutting concerns [12]. The idea behind
AOP is to implement so-called cross-cutting concerns as
aspectsand the core (non-cross-cutting) features are imple-
mented ascomponents[5]. Using pointcuts3 andadvices4, an
aspect weaver glues aspects and components atjoin points
together. Fig.6 shows on the left hand side (1) two aspects
(A1 and A2) which extend the class definitions (C1 and C2).
In AOP aspects can be added to the programming logic where
ever functions are called. It is also possible to replace any
functionality dynamically or to define the order of execution
by precedence.

In Feature-Oriented Programming (FOP) the program func-
tionalities can extended during the compilation and execution
process, e.g. two or more functions can be combined to create
extented features [7]. Fig. 6 shows on the right hand side (2)
a simple overview of FOP. Here, F4 inherits the properties
and methods of F1. Additionally, F6 refines F4, which can be
done during runtime or while the compiling process creates
the application.

Aspects and features in their current representation are
intended for solving problems at different levels of abstraction
[4], [14], [16]. Whereas aspects in AspectC++ [24] act on the
level of classes and objects in order to modularize cross-cutting
concerns, features act on the software architecture level [3].

For our approach, we are expecting that AOP and FOP are
suitable methodologies for dynamic binding of applications as
stated in Sec.IV-E. For example, the BOINC project result file
format must be defined and created manually by the scientist
or developer for a specific scientific application. This file can
be generated during the code generation process as soon as
definitions of the BOINC validator and BOINC assimilator
are existing. After that, the BOINC project can be deployed
with error-free validator and assimilator configurations.

D. Domain-specific language for BOINC

Domain-specific languages (DSL) are language definitions
tailored to the development needs of specific problem domains

3The point of concern to execute anadvice.
4Additional code that should apply to the existing model.



Fig. 6. (1) Two aspects extend two classes, (2) Two features refine two other
features

[10]. For example the Structured Query Language (SQL)
is designed for database queries. Another vital part of our
modeling language approach to BOINC is a proper definition
of a DSL for BOINC applications. Here, a key issue is
the use of Xtext which allows to create an application by
code generation. Xtext offers in combination with Xpand a
template-based code generation engine [26]. By using Xtext
and Xpand is has been shown that it is possible to create a
complete BOINC application [21].

Generally speaking, all BOINC functionalities can be de-
fined using a set of specific language elements. Our model-
driven approach allows to develop applications independently
of the target type, i.e. for CPU or GPU targets. Furthermore,
BOINC offers various diagnostic parameters which enable or
disable checks, e.g.memory leaksor heap violations. With the
help of DSL statements these specific options can enabled or
disabled for a subsequent automatic code generation. For ex-
ample, the following code fragment defines a single processor
environment which enables the above mentioned diagnostic
flags:

target cpu single;

diagnostics {
dumpcallstack
heapcheck
memoryleakcheck
redirectstderr
tracetostderr
}

In order to create applications with multicore or GPU com-
puting support the following statement can be used:

target cpu mode multi with 10;
// or

target gpu dim(10) block(4);

The first line describes a multi-thread application with up to
10 threads. The last statement enables the support of GPU
computing. In GPU computing the process is splitted intodim
threads, executed in4 blocks[13]. It is also possible to include
manual implementations or third-party libraries. The following
examples show this in more detail. The required dependencies
to third-party libraries or functionalities could be also defined
with only a few lines of code. This code is used for the
“make” process of an executable application. On Linux or
Unix like operating systems a makefile is generated whereas
on Windows systems it is possible to generate different project

files which can be imported by integrated development envi-
ronments like Visual Studio or Eclipse. Using this feature one
can realize aplatform-independentapproach.

includes AppInclude {
"~/boincadm/framework"
"~/boincadm/src/api"
"~/boincadm/src/lib"
}

libraries AppLibrary {
"/lib", "pthread"
"~/boincadm/framework", "visualgrid"
"~/boincadm/src/api", "boinc_api"
"~/boincadm/src/lib", "boinc"
}

It is common to use parameter files for the BOINC applica-
tions. The native way of doing this is to createmapping files
on the server with a few parameters. Whenever clients connect
to the server, they retrieve the application and all necessary
parameter files. The following DSL fragment describes this
procedure using theinfile statement. The content is speci-
fied as an XML tree and could be iterated with a reference, e.g.
ObjectName1. As a consequence of, binary data must be
base64 encrypted [25]. Each reference contains the parameter
as astruct or classdefinition.

infile "metropolis_data.xml"
as ObjectName1;

infile "param.jj" as ObjectName2;
infile "param.nn" as ObjectName3;
infile "param.ww" as ObjectName4;

After the execution of the client application the results are
stored inresult filesdefined by the statementoutfile and
are uploaded to the server.

outfile "metropolis_out.erg"
as ObjectResult1;

In general there exist several ways using a modeling processto
develop a certain client application. As a matter of fact, every
developer differs in his way to develop applications and it
is necessary that the DSL supports this variety. For example,
it is possible to link third-party libraries to the application
using DSL statements. Furthermore, the application code can
also be directly implemented into theworker part. The
following DSL fragment contains an example which is used
in [21]. Here, theworker starts the environment for execu-
tion instructions with the nameSpinhenge. The statement
exec defines pointcut expressions which are used by the
AOP weaver process to deploy the scientific application. In
this definition, the pointcut expression describes the working
function in Fig.8.

worker Spinhenge {
exec "void %::Spinhenge::doWork(...)";
}



This statement could be replaced by other instructions, e.g.

worker Spinhenge {
cpp {
int a = 42;

}
action(modeledFunction(a));
}

Here, cpp starts an inline code area which contains na-
tive C/C++ statements. The variablea is available right
after its definition and optional initialization within the
context. It can be used by DSL defined functions like
modeledFunction(variable). Third-party applications
can be executed using the DSL statementwrapper. It allows
to call an external application, so calledlegacy application,
and only one call is allowed to realize. Optional parameters
for the application can be set in theConfigurationpackage.

worker Spinhenge {
wrapper("Matlab", "Argv[1] Argv[2]" [,

weight, checkpoint_filename,
fraction_done_filename, ...]);

}

These optional parameters are defined by the wrapper inter-
faces [11], [15], [19].

screensaver Spinhenge {
render "% Screensaver

::Spinhenge::doWork(...)";
}

During the execution of an application different events can
occur, e.g. events which could also be logged for diagnostic
analysis in the above mentioned definitions. Furthermore an
exception handling is described by the following DSL defini-
tion:

handle TypeOfException (: optionalName) {
/* to be defined handler */
}

Predefined exception handlers are reusable by other excep-
tions. This is enabled by using theref statement which uses
the optional nameoptionalName of the previous example.

handle AnotherTypeOfException
ref optionalName;

The BOINC framework uses interprocess communication
(IPC) to exchange data between different application instances,
e.g. scientific application, and screensaver. The native way
to use IPC needs the definition of shared variables, e.g.
in a C/C++ struct or class definition and furthermore
different functions which handles these variables. A strict well-
formed definition would be easier to use and reduces the
effort of changing code parts in the source files. The DSL
statementexchange describes the structure of the IPC with
C/C++ language elements like datatypes which are usable in
every application. The keywordfeature defines an AOP

Fig. 7. Visual Grid FrameworkAbstraction Layer

pointcut expression which is used to assign values to the
variable on the left hand side, e.q.update_time keeps the
delta in milliseconds between the value updates. The listed
AOP pointcut expressions are implemented in theVisual Grid
Frameworkwhich is described in Sec.IV-E.

exchange {
double update_time :

feature "% Boinc::updateTime(...)";
double fraction_done :

feature "% Boinc::fractionDone(...)";
double cpu_time :

feature "% Boinc::cpuTime(...)";
}

To handle BOINC Trickle Messages theTrickleUp and
TrickleDown commands are stated in the following listing.
The TrickleUp needs two AOP pointcut expressions to
check if a trickle up must handled and the trickle up handler
itself.

TrickleUp "bool checkTrickleUp(...)"
do "% handleTrickleUp(...)";

TrickleDown "% handleTrickleDown(...)";

The handler defined byTrickleDown is called frequently
to manage the incoming messages by the BOINC server, e.g.
command to abort one workunit or informations of the current
BOINC credit points.

Furthermore, general descriptive information about the ap-
plication can be defined with the statementinfo.

info {
author="Christian Benjamin Ries";
email="cries@fh-bielefeld.de";
license="FH Bielefeld";
description="Spinhenge@home Example";
project="Spinhenge@home";
version="3.16";
}

E. Visual Grid Framework

Fig. 7 shows the proposedVisual Grid Frameworklayer
which is defined between the layer that describes the un-
derlying computer hardware, the BOINC framework, and
the VisualGridML Genmodel. The Visual Grid Framework
offers a less complex access to the BOINC functionalities
and handles the creation of applications for different platform
targets, e.g. Intel 686 based 32-bit or 64-bit architectures.



Fig. 8. Composition of the Visual Grid Framework Approach

The left side describes one approach to generate the function
calls and logical program parts between the textual-/graphical
modeling tools, fragments,VisualGridML Genmodel, Visual
Grid Framework, and BOINC Framework. In Fig.8 we show
how theVisual Grid Layerworks.

TheMain class is generated by the code generation process
and contains the implementation of the starting routines. This
routine instantiates the interface to the BOINC framework as
well as to the scientific application. The entry point of the
scientific application is called using thedoWork() functions
of theWorker::SpinhengeandScreensaver::Spinhengeclasses.
These two classes are specializations of the abstractController
class. TheController class keeps track of all necessary data
management, e.g. input, and output data files, checkpoint
definitions, etc. TheIPC class (Interprocess-Communication)
is completely generated and implements the initializationand
update routines. This class is used by theWorker::Spinhenge
andScreensaver::Spinhengeclasses for the exchange of data.
The externalBOINC Client class is an actor and therefore
represents just the interface to the client. The BOINC Client
has the full control of the executed applications and processes.

As a consequence, there exist two ways to generate an
application within theVisual Grid Framework, (1) creation
of a class which is derived from the abstractController class,
(2) the definition of AOPjoinpointsandadvicesas defined by
the DSL in Sec.IV-D.

As a first test of our approach we have created an appli-
cation which is similar to the BOINC sample to perform a
transformation of lowercase to uppercase texts. The BOINC
sample is based on approximately400 lines of code, including
the makefile, C++ header, source files, and31 BOINC specific
function calls. In contrast to this, our generated application
contains only about90 lines of code, including60 lines of
DSL code, and30 lines of application specific code which
performs the transformation. All defined dependencies, e.g.
for the initialization of the process or exception handling,

are resolved by generating files. Furthermore, a makefile is
generated which on execution builds the complete application
for the defined client platform architecture.

V. CONCLUSION

We have presented a first modeling language approach for
developing Public Resource Computing applications on the
basis of BOINC. We have demonstrated that the complete
BOINC framework can be divided into a few logical packages
that provide the necessary graphical and textual model ele-
ments to allow for a model-based development of applications
with subsequent source code generation. Our approach is
technically realized by using standardized and well-defined
technologies [26]. Thus far, we have just implemented a small
part of the BOINC functionalities. Key features like graphical
and textual modeling elements, theVisualGridML Genmodel
have been defined to an extent that we could show the general
feasibility of our approach. However, further investigations
with regard to the abstraction of the system architecture, de-
pendencies, error checking, and the transformation to different
target languages are needed. We have successfully performed
a first test of our approach by modeling an existing BOINC
application with just a few lines of DSL code using external
libraries for the core computational routines and abstraction
of the BOINC functionalities. However, most steps of our
modeling process are still performed manually, and we are
currently working on the creation of a unified development
environment that supports the wide range of technologies,
including a one and only graphical modeling framework which
minimizes the need of textual modeling fragments, automatic
dependencies resolving, completely error-free code generation,
and higher support for legacy applications.

REFERENCES

[1] D. P. Anderson,BOINC: A System for Public-Resource Computing and
Storage, 5th IEEE/ACM International Workshop on Grid Computing.
November 8, 2004, Pittsburgh, USA

[2] D. P. Anderson, C. Christensen, and B. Allen,Designing a Runtime
System for Volunteer Computing, IEEE Computer, 2006

[3] S. Apel, T. Leich, M. Rosenmüller, and G. Saake,FeatureC++: Feature-
Oriented and Aspect-Oriented Programming in C++, Technical Re-
port, Department of Computer Science, Otto-von-Guericke University,
Magdeburg, Germany, 2005

[4] S. Apel, T. Leich, and G. Saake,Aspectual Mixin Layers: Aspects and
Features in Concert, In Proceedings of International Conference on
Software Engineering (ICSE), 2006

[5] S. Apel and D Batory,When to Use Features and Aspects? A Case
Study. In Proceedings of ACM SIGPLAN 5th International Conference
on Generative Programming and Component Engineering (GPCE’06),
Portland, Oregon, October 2006

[6] H. Brunelière, J. Cabot, and F. Houault,Combining Model-Driven
Engineering and Cloud Computing, AtlanMod, INRIA RBA Center &
EMN, France, Nantes, 2010

[7] D. Batory, J. N. Sarvela, and A Rauschmayer,Scaling Step-Wise
Refinement, IEEE Transactions on Software Engineering (TSE), 30(6),
2004

[8] T. Estrada, M. Taufer, and D. P. Anderson,Performance Prediction and
Analysis of BOINC Projects: An Empirical Study with EmBOINC, in J
Grid Computing, Springer, 2009

[9] R. C. Gronback, E. Gamma, L. Nackmann, and J. Wiegand,Eclipse
Modeling Project, A Domain-Specific Language (DSL) Toolkit, Addison-
Wesley, 2009, ISBN: 978-0-321-53407-1



[10] A. Hessellung,Domain-Specific Multimodeling, IT University of Copen-
hagen, Denmark, 2008

[11] P. Kacsuk, J. Kovacs, Z. Farkas, A. C. Marosi, G. Gombas and
Z. Balaton, SZTAKI Desktop Grid (SZDG): A Flexible and Scalable
Desktop Grid System, Journal of Grid Computing, 2009

[12] G. Kiczales et al.,Aspect-Oriented Programming, In Proceedings of
European Conference ob Object-Oriented Programming (ECOOP), 1997

[13] D. Kirk, and W. W. Hwu,Programming Massively Parallel Processors:
A Hands-On Approach, Morgan Kaufman Publ Inc, 2010, ISBN: 978-
0123814722

[14] K. Lieberherr, D. H. Lorenz, and J. Ovlinger,Aspectual Collaborations:
Combining Modules and Aspects, The Computer Journal, 46(5), 2003

[15] A. C. Marosi, Z. Balaton, and P. Kacsuk,GenWrapper: A Generic
Wrapper for Running Lagacy Applications on Desktop Grids, 3rd
Workshop on Desktop Grids and Volunteer Computing Systems (PCGrid
2009), 2009 May, Rome, Italy

[16] M. Mezini and K. Ostermann,Variability Management with Feature-
Oriented Programming ans Aspects, In Proceedings of ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE), 2004

[17] OMG Adopted Specification formal/2009-02-02,OMG Unified Model-
ing LanguageTM (OMG UML), Superstructure, Version 2.2, OMG, 2009

[18] OMG Adopted Specification formal/2010-02-01,OMG Object Con-
straint Language, Version 2.2, OMG, 2010

[19] C. B. Ries, and C. Schröder,ComsolGrid - A framework for performing

large-scale parameter studies using Comsol Multiphysics and BOINC,
COMSOL Conference, Paris, France, 2010

[20] C. B. Ries,Performance measuring and automatic calibration of BOINC
installations, University of Applied Sciences Bielefeld, Germany, unpub-
lished

[21] C. B. Ries, T. Hilbig, C. Schröder et al.,Spinhenge@home - Monte Carlo
Metropolis, Version 3.16, University of Applied Sciences Bielefeld,
Germany,http://spin.fh-bielefeld.de

[22] C. B. Ries, T. Hilbig, and C. Schröder,UML 2.2 Profile: Visu@lGridML,
University of Applied Sciences Bielefeld, Germany, unpublished

[23] C. Schröder, “Spinhenge@home - in search of tomorrow’s nanomagnetic
application”,to appear in Distributed & Grid Computing - Science Made
Transparent for Everyone. Principles, Applications and Supporting
Communities, 2010

[24] O. Spinczyk, D. Lohmann, and M. Urban,Advances in AOP with
AspectC++, Software Methodologies, Tools and Techniques (SoMeT
2005), IOS Press, September, 2005, Tokyo, Japan

[25] T. Imamura, B. Dillaway, and E. Simon,XML Encryption Syntax and
Processing, W3C, December, 2002,http://www.w3.org/TR/xmlenc-core

[26] Xtext - programming language framework, Xpand - a template language,
http://www.eclipse.org/modeling/mdt

[27] U. Zdun,Concepts for Model-Driven Design and Evolution of Domain-
Specific Languages, In Proceedings of the International Workshop on
Software Factories OOPSLA, pp. 1-6, October, 2005

http://spin.fh-bielefeld.de
http://www.w3.org/TR/xmlenc-core
http://www.eclipse.org/modeling/mdt

	Introduction
	Typical errors during the BOINC server configuration process
	The BOINC Application Programming Interface

	State of the Art
	Abstraction of the BOINC Framework
	The modeling language approach for the abstraction of BOINC
	Graphical modeling environment
	Graphical modeling elements
	Aspect-Oriented Programming and Feature-Oriented Programming
	Domain-specific language for BOINC
	Visual Grid Framework

	Conclusion
	References

