A Modeling Language Approach for the
Abstraction of the Berkeley Open Infrastructure for
Network Computing (BOINC) Framework

Christian Benjamin Ries Thomas Hilbig, Christian Schroder
University of Applied Sciences Bielefeld University of Applied Sciences Bielefeld
Computational Materials Science & Engineering Computational Materials Science & Engineering
Wilhelm-Bertelsmann-Str. 10, Wilhelm-Bertelsmann-Str. 10,
33602 Bielefeld, Germany 33602 Bielefeld, Germany
Christian_Benjamin.Ries@fh-bielefeld.de {Thomas.Hilbig, Christian.Schroeder}@fh-bielefeld.de

Abstract—=BOINC (Boinc Open Infrastructure for Network BOINC project has its own server, applications and taske. Th
Computing is a framework for solving large scale and complex client executes the application, i.e. performs the catmra
computational problems by means of public resource computing. 54 sends its results back to the server which assembles thes

Here, the computational effort is distributed onto a large number . t “qlobal” it t th Its at ifi
of computers connected by the Internet. Each computer worksn into a “global” result or stores these results at specificesa

its own workunits independently from each other and sends back The setup of a BOINC project heavily relies on the use of
its result to a project server. There are quite a few BOINC-based

projects in the world. Installing, configuring, and maintaining a le-Pased scripting techniques. For instance, the prograg
BOINC based project however is a highly sophisticated task. languagePythonis utilized for the creation of a standard
Scientists and developers need a lot of experience regarding theBOINC server infrastructure with database initializatioreb-
underlying communication and operating system technologies, site and administration interface configuration and anooyati
even if only a handful of BOINC related functions are actually g NC test application. A few scripts are implemented using

needed for most applications. This limits the application of .) . .
BOINC in scientific computing although there is an ever growing GNU BASH to sign executable files with encryption keys

need for computational power in this field. In this paper we and yet another script uses the C shell (csh) to monitor
present a new approach formodel-based developmenf BOINC network traffic. Extensible Markup Language (XML) files
projects based on the specification of a high level abstraction are used for the runtime server configurati@dl. files have
language as well as a sw_table deve_lopment environment. ThIStO be editedmanually by the project developer, scientist or
approach borrows standardized modeling concepts from the well-
known Unified Modeling Language (UML)and Object Constraint admln_|strator which bears the risk of makmg a large number
Language (OCL) of typical errors. For example, wrong spelling of parameter
names or simulation relevant values as shown-# would
|. INTRODUCTION have a significant effect on the system’s integrity and the
OLUNTEER computing technologies allow to realizeapplication’s performance8]. One way to cope with these
low-cost high-performance computing projects in certaiproblems is to provide a tool support which allows to autamat
application areas. A very prominent framework based on thge manipulation, generation, and checking of all necgssar
principle of Public-Resource Computing (PRC) is BOINGCripts.

(Boinc Open Infrastructure for Network Comput)n@OINC In this paper we discuss a model-based approach for the

provides an Application Programming Interface (API) Witl?llevelopment of BOINC projects that makes it possible to
about one hundred functions of different categories, e.g

! : , implement application specific changes while always kegpin
filesystem operatiogprocess contrallingand status MEeSSage 5 valid configuration of the BOINC infrastructure. We give
handling [1], [2]. A few of the most important functions

listed | or-B. PRC is based i an idea on how to create a proper high-level domain specific
are listed in sectionl-B. IS based on a server-c 'en‘anguage (DSL) in order to develop and maintain a complete

communication infrastructure mechanism. Here, the C“eBbINC application. This DSL forms the basis of an easy-
retrieves a project specific application from the servenglot‘I :

ith led Kunit. i ber of ; 0-use programming environment along with a high-level
with a so-called workunit, i.e. a number of parameters ugua rogramming language and a suitable development process.

pro_videﬁ in da(tja EIES Or]: simplle_ AS_C” or bir}aw format trﬁ"f ar additionally, we present a way to model a complete BOINC
optionally needed by the application to perform a Specise.a ;i jation including the client application for diffaretarget

BOINC is strongly focused on autonomic applications, ea mputer architectures and processor types. Aspectsgiésin

This project is funded by the German Federal Ministry of Ediocaand a”d multicore processqr units (CPU) and graphics proogssin
Research units (GPU) are also discussed.

A. Typical errors during the BOINC server configuration

|

Actions

[]
pI’OCGSS :ITI Communication ,”’?<<irr7‘porl>>
The following list shows examples of typcial errors that can

A A emefies
occur due to manual editing of the BOINC server configuration cempbrrs S Camtroess Lo
files. As a consequence of these errors one can expect a . o 5
significant effect on the system’s integrity and applicatio S :IET{}
performance. T .

v
<<merge>> <<""e’9€g>

« uldl_dir_fanoutis the parameter that contains the number
of subdirectories inside the upload and download directo-
ries on the server computer. A wrong value set here may
dramatically slow down the system’s server performancéig. 1. Logical packages and dependencies of the BOINC imalities
because of too many hard disk drive accesses.

« shmem_keyames the allocated memory that is needed)

for the interprocess communication (IPC) between dpaintain software systems. For example, Brunel,éteal.

BOINC applications on every BOINC project server. It id6] propose aModeling as a ServicgMaas) initiative for

required that this value is unique, never changed duri$ud computing projects with an emphasis on topics like

the runtime and is used by all BOINC server application§calability, tool interoperability, and the definition obafeling
msg_to_hosmust be included in the BOINC server conMmash-ups as a combination of MDE services from different

figuration to enable sending of trickle-down messagdes vendors. Moreover, the definition of domain-specific largpsa

the BOINC client nodes. (DSL) [10], [26], [27] along with the development of tools
. tasksdescribes a set of parameters for applications whi¥¥ich support the developer during the DSL conceptigh [

should execute in a cycle period, i.e. a crontab. Suitadi&7], [26] are currently under investigation. However, none of

values are needed to avoid problems like extremely laréte above mentioned approaches is related to public resourc

logging files or a outdated statistics, i.e. how man§omputing nor can it be directly used for the modeling preces

workunits are left for working or have errors during thé®f BOINC projects. In the following chapters we therefore

computation. propose a first modeling language approach for the abgiracti
. daemoncontains a set of command descriptions. It i8f the BOINC framework.

useful to start more than one daemon process to get

a good load balancing of user requests, e.g. when the !l ABSTRACTION OF THEBOINC FRAMEWORK

BOINC projects are much in demand. The BOINC framework offers many very useful function-
One of our goals is the automatic determination of these madities that help the developer to create his application.aA
important parameters for different target computer aechit first step towards our modeling language approach we have
tures and processor typea(. subdivided the BOINC functionalities into different logic

L) packages as shown in Fif). Each package contains functions

B. The BOINC Application Programming Interface that cover a specific aspect during the development process

BOINC offers few example applications in which the numf22] and can be used independently from functions of other
ber of lines of code range frol8 to 308. The first one only packages which minimizes the number of dependencies. The
includes some elementary functions and no BOINC specifithole BOINC project including the server installation carmp
commands, e.g. a for-loop which just keeps the processgr bugnts and application specific implementations is conthine
for one second. The second one is a more useful example siti® packageProject This package directly depends on the
it contains BOINC specific function calls, e.g. how to retée packagesServer and Application The packageApplication
the name of the checkpoint file or the actual processing.statentains all application specific implementations and depe
Implementing a complex scientific application using BOIN®@n the following child packages:

is far more complicated and requires a broad experience of, gyents- This package describes the abstractions for all

Project

the developer. However, one can show that drdydifferent possible events that can occur during the execution, e.g.
BOINC functions are necessary to create a successfully run- exceptions likeFile not found’ or 'Segmentation fault’
ning research relevant distributed computing applicalizs), It contains routines for clearly defined error handling.
[21]. « Actions- Every execution statement is gathered within

this package including wrapper routines to call third-

)))) _ _ party applications, i.e Matlab, or other domain-specific
Model-driven engineering (MDE) is becoming the domi- gjmulation tools.

nant software engineering paradigm to specify, develop and, pependenciesAll libraries that are needed for the whole

. _ project are contained in this package. This includes the
ITrickle messages are asynchronous, ordered, and reliablsagess be-

tween the BOINC server/clients and let applications comnataiavith the BO”\!C libraries as well as application specific runtime
server during the execution of a workunit. libraries and external sources.

Il. STATE OF THEART

o Communication This package includes the BOINC core
client component which is the interface between the ‘
client installations and project servers and performs the
information exchange between them. N

o Configurations- In this package one keeps all system G
relevant parameters coded in XML files. ’
The complete server installation and maintenance process ‘

is provided by the packageerver This package describes the
relationships between all components of a complete BOINC

VisualGridML Genmodel

Graphical Model

server installation, i.e. all configuration files, a list dfet Fig. 2. Simplified view of the modeling process
parameters for the workunits, description of installedliapp

tions with the corresponding architecture and processgets. 4 do_work() (id:0)

The package&erverimports its required information from the @

contents of theConfigurationsand Communicatiorpackages. -[01; inta—daz J

IV. THE MODELING LANGUAGE APPROACH FOR THE
ABSTRACTION OFBOINC

Nowadays, models and model-based techniques are the
fundamental means by which engineers are able to cope with
otherwise unmanageable complexity and reduce design risk.
In particular, software models have the distinct advanthge *
they can beevolvedfrom high-level views of possible designs
into actual implementations.

The Unified Modeling Language (UML) a widely adopted, Fig. 3. Example flowchart diagram for instruction sequences.
widely supported and customizable industry standard —splay
a key role in modern software development. With the pos-)) o
sibility of creating standardized UML profiles it provides V-B below. For a more detailed modeling of the application
the fundamentals for a true engineering-oriented appraachlogic the developer is required to use a textual DSL as
the construction of software. That is, system models can Bgscribed in SeclV-D. The Graphical Modelwill be im-
used to understand and assess designs and predict deelgﬂwented using the Graphical Modeling Framework (GMF).
risks in meaningful (e.g., quantifiable) ways. Full autamat GMF includes EMF, the Graphical Editing Framework (GEF)
code generation from UML models facilitates preservation &1d Draw2D. GEF is a framework built upon the Model-View-
proven model properties in the final implementation. Controller (MV_C) pattern and handles the view and logical

In our approach to a model-based development of BOINE@MPOnents with own instances. The controller handles the
projects we focus on the use of quasi standard softwdfgiC between these instances. Thextual Modeland the
tools available within the Eclipse development environmerferaphical Modelare synchronized, i.e. every change in one
These tools enable us to develop all necessary componefifdhe models causes changes in the other one and each model
like diagram editors, including graphical representatiaf will autqmaucally be adjusted._ Both models will bg trans-
modeling elements, code generators, etc. in one and the sdfi@ed into one (yet to be defined) so-callgualGridML
development environment. Specifically, the code generati®®nmodel This can be done by exploiting the model-to-
should be realized using a template engine which could aldipdel transformation framework Query/View/Transforroati

a,
k> modeledFunction(a) :

e

be used to generate important documentation files. (QVT). The QVT operation mapping language is capable
of dealing with multiple input and output models and also
A. Graphical modeling environment supports OCL statements.

Throughout our project we exclusively use the Eclipse One of the key issues of our approach is to define a proper
Modeling Framework (EMF) as released by the Eclipse Mod¥isualGridML GenmodelThe VisualGridML Genmodetan
Development Tools (MDT) projec®p]. A detailed description be exported into different other formats, e.g. XML, XML
of all components can be found |r9][A key feature of Metadata Interchange (XM|), or Ecore. ThésualGridML
our approach is the definition of a suitable standardiz&enmodelill only be generated when the previously created
UML2 profile [22]. Here, we make use of the EMF-basednodels are valid. In order to support the developer durireg th
implementation of theUML2 and UML2 Tools subproject. Verification and validation process adequate error message
EMF specifically allows implementing of constraints based cand output comments will be created.
the Object Constraint Language (OCLL4].))

Fig. 2 gives an overview about a simplified modelingB' Graphical modeling elements
process. Here, the developer uses graphical modeling etsme The proper definition of suitable graphical modeling ele-
within diagrams to design an application as described in Segents is vital for our modeling language approach for the

~ Spinhenge@home IPC Y (+ Spinhenge@home Configuration
< Generator4Workunits
% BOINC Client N use(w)
‘g < ValidatordResults
7 Scientific Application wmsshares> oo Renge Exchanger I) use(«)
! Fee 1 i 4 =<validate>:
sharaa> ko 1
== |
T Screensaver e e R e ! il
y- koo < =<=merge>:
=
. ~
Fig. 4. Interprocess Communication within a BOINC applicatio Fig. 5. Elements for configuration purpose

abstraction of BOINC. In the following we present someould be a cronjob. The upper actor describes a user. In this

examples along with sample modeling fragments. Bighows example the user defines workunits.

a flowchart of a high-level description of instruction segces. . : .

The graphical notation is adapted from the UML2 rowchargr'aQSr’ﬁiig_o”ented Programming and Feature-Oriented Pro-

definition [17, Fig. 12.36]. .)) _
Fig. 3 shows an example that uses seven graphical modeling*SPect-Oriented Programming (AOP) aims at separating

elements. As mentioned above these modeling elements &g Mmodularizing cross-cutting concerdg]| The idea behind

defined in theActionspackage and have the following meaning\©P 1S to implement so-called cross-cutting concerns as
[22]: aspectsand the core (non-cross-cutting) features are imple-

mented acomponent$5]. Using pointcut$ andadvice$, an

aspect weaver glues aspects and componenjsiratpoints

3 gether. Fig.6 shows on the left hand side (1) two aspects

O(Al and A2) which extend the class definitions (C1 and C2).

In AOP aspects can be added to the programming logic where

C/C4+ instructions V&ver functions are called. It is also possible to replace any
. . s - functionality dynamically or to define the order of execautio

. De_C|5|ondescr|bes anf-el se cor_w!l'uon._ _ by precedence.

« Join merges two or more subdivided instruction se- In Feature-Oriented Programming (FOP) the program func-

quences. . . tionalities can extended during the compilation and exenut

¢ !Executeexecgtes external C/C++ f“.”C“O”S which ar%rocess, e.g. two or more functions can be combined to create

implemented in header and source files. extented features/]. Fig. 6 shows on the right hand side (2)

In Fig. 4 we show an adapted version of a UML2 coly simple overview of FOP. Here, F4 inherits the properties
laboration diagram 17, Tab. 9.1, 9.2]. The dashed rounde&nd methods of F1. Additionally, F6 refines F4, which can be
rectangle on the right hand side specifies a shared data.spgg@e during runtime or while the compiling process creates
This data space is defined using one ore more port descript@®g application.

Different ports could include different data descripticasd ~ Aspects and features in their current representation are
Could alSO be Connected with diﬁerent SO'Ca”ed handlﬁne intended for so'ving prob'ems at diﬁerent |eve|s Of abﬂim
three elements on the left hand side are examples of sqqﬂ [14], [16]. Whereas aspects in AspectC+24] act on the
handlers. Each handler handles a SpeCifiC functionalityiand|eve| of classes and Objects in order to modularize Cromgu
connected with one application implementation. This edempconcerns, features act on the software architecture 18}el [
contains handlers for thBOINC Core Cllerﬁ, a scientific For our approach, we are expecting that AOP and FOP are
application, and a component for a screensaver session Eyitable methodologies for dynamic binding of applicasiars
The handler can have only one data port. Data ports can oB4ted in SedV-E. For example, the BOINC project result file
be connected to data ports of shared data space. Connectigisiat must be defined and created manually by the scientist
between ports may also be named as shown in this example.developer for a specific scientific application. This filnc

In Fig. 5 we show an adapted version of a UML2 Usepe generated during the code generation process as soon as
Case diagraml[7, Fig. 16.10] which contains elements of thejefinitions of the BOINC validator and BOINC assimilator
Configurationpackage 22]. The elements on the left hand sideare existing. After that, the BOINC project can be deployed

are the actors for the use cases of the right hand side. The w&@ error-free validator and assimilator configurations.
cases contain a reference to predefined functions whichean b

modeled with a flowchart diagram. The dashed line conne&s Domain-specific language for BOINC
the use cases with the appropriate actor and defines the type domain-specific languages (DSL) are language definitions
execution. The lower actor describes the BOINC server whithilored to the development needs of specific problem dasnain

« Start which describes the entry point of an application

« Stop which defines the end of execution, i.e. after th
no other instructions will be executed and the applicati
will shut down.

o Actionis a modeling element which can execute nati

2The BOINC Core Client communicates with schedulers, uploants a 3The point of concern to execute advice
downloads files, and executes and coordinates applications 4Additional code that should apply to the existing model.

Aspect-Oriented Programming Feature-Oriented Programming

 e—p—

= refinement
inheritance E

- i ncl udes Appl ncl ude {
"~/ boi ncadni f r amewor k"
"~/ boi ncadm src/ api "
"~/ boi ncadn src/lib"

}

[10]. For example the Structured Query Language (SQL)

is designed for database queries. Another vital part of oui braries ApplLibrary {

modeling language approach to BOINC is a proper definitiod' /i b", "pthread"

files which can be imported by integrated development envi-
ronments like Visual Studio or Eclipse. Using this feature o
can realize glatform-independenapproach.

Fig. 6. (1) Two aspects extend two classes, (2) Two feat@fésertwo other
features

of a DSL for BOINC applications. Here, a key issue is" ~/ boi ncadn franmewor k", "visual grid"
the use of Xtext which allows to create an application by" ~/ boi ncadni src/api ", "boinc_api"
code generation. Xtext offers in combination with Xpand a" ~/ boi ncadni src/lib", "boinc"

template-based code generation engi2@.[By using Xtext }

and Xpand is has been shown that it is possible to creatt?t s common to use parameter files for the BOINC applica-

complete BOINC application2l]. tions. The native way of doing this is to createpping files

) Gener_ally speaking, aII_l_BOINC functionalities can be deo' the server with a few parameters. Whenever clients connect
fined using a set of specific language elements. Our mod

dri h all 0 devel licati ind “the server, they retrieve the application and all necgssa
fiven approach aflows to develop applications in Gpemjdenparameter files. The following DSL fragment describes this

of the target typej € fgr CPU'or GPU targets. .Furthermor rocedure using thenfi | e statement. The content is speci-
BOINC offers various diagnostic parameters which enable %d as an XML tree and could be iterated with a reference, e.g.

disable checks, e.gnemory leak®r heap violationsWith the Ooé ect Nanel. As a consequence of, binary data must be

help of DSL statements these specific options can enable Aepa encrypte®§]. Each reference contains the parameter
disabled for a subsequent automatic code generation. For X astruct or classdefinition

ample, the following code fragment defines a single progesso

environment which enables the above mentioned diagnostiefi |l e "netropolis_data. xm"

flags: as bj ect Nanel;
infile "paramjj" as ObjectNane2;
infile "paramnn" as Object Nane3;
infile "param ww' as OCbject Nane4;

target cpu single;

di agnhostics {

dunpcal | st ack After the execution of the client application the resulte ar
heapcheck stored inresult filesdefined by the statemewntutfil e and
nmenor yl eakcheck are uploaded to the server.

redirectstderr
tracet ostderr

}
In order to create applications with multicore or GPU coml-n general there exist several ways using a modeling prdoess

puting support the following statement can be used: develop a cgrtam glleqt application. As a mattgr O.f facergv .
developer differs in his way to develop applications and it

outfile "netropolis_out.erg"
as bjectResultl;

target cpu node nmulti with 10; is necessary that the DSL supports this variety. For example
/'l or it is possible to link third-party libraries to the applimat
target gpu di m10) bl ock(4); using DSL statements. Furthermore, the application code ca

computing. In GPQ computing th? process Is_sphtteq tita tion instructions with the nam&pi nhenge. The statement
threads, executed ihblocks[13]. It is also possible to include exec defines pointcut expressions which are used by the

manual implementations or third-party libraries. Thedaling AOP weaver process to deploy the scientific application. In

examples show this in more detail. The required dependsncliﬁis definition, the pointcut expression describes the wgrk
to third-party libraries or functionalities could be alsefided function in Fié 8 P P e
e

with only a few lines of code. This code is used for th
“make” process of an executable application. On Linux awor ker Spi nhenge {

Unix like operating systems a makefile is generated whereasxec "void % : Spi nhenge: : doWork(...)";
on Windows systems it is possible to generate differentgotoj }

This statement could be replaced by other instructions, e.g B e
BOINC Framework |

Visual Grid Framework

wor ker Spi nhenge {

Aspect-/ - -
cpp { Feature) VisualGridML Genmodel
! Oriented (e.g. C/C++ code,
int a = 42; Linking | Fragments "yui descriptions)
} . X Textual Modeling Graphical Modeling
acti on(nodel edFunction(a)); |
} Fig. 7. Visual Grid FrameworkAbstraction Layer

Here, cpp starts an inline code area which contains na-
tive C/C++ statements. The variable is available right
after its definition and optional initialization within th
context. It can be used by DSL defined functions lik
nodel edFunct i on(vari abl e) . Third-party applications
can be executed using the DSL statemanapper . It allows
to call an external application, so calléegacy application
and only one call is allowed to realize. Optional parametegkchange {

for the application can be set in ti@nfigurationpackage. doubl e update tine :

feature "% Boinc::updateTine(...)";

epointcut expression which is used to assign values to the
gariable on the left hand side, ewgpdat e_ti me keeps the
delta in milliseconds between the value updates. The listed
AOP pointcut expressions are implemented in \éisual Grid
Frameworkwhich is described in SedV-E.

wor ker Spi nhenge {

wr apper ("Mat | ab", "Argv[1] Argv[2]" [, doubl e fraI(I:t [on._done : .)
wei ght, checkpoint_fil enane, feature % Boi nc: :fractionDone(...)";
fraction_done filename, ...]); doubl e cpu_time : _
} feature "% Boinc::cpuTime(...)";
These optional parameters are defined by the wrapper int}er- , i
faces 1], [15], [19]. Tolhandle BOINC Trickle Messages.th“'m ckl epp a}nc_i
Tri ckl eDown commands are stated in the following listing.
screensaver Spinhenge { The Tri ckl eUp needs two AOP pointcut expressions to
render "% Screensaver check if a trickle up must handled and the trickle up handler
:: Spi nhenge: : doWork(...)"; itself.

TrickleUp "bool checkTrickleUp(...)"
During the execution of an application different events can do "% handl eTrickl eUp(...)";
occur, e.g. events which could also be logged for diagnostiqr i ckl eDown "% handl eTri ckl eDown(...)";
analysis in the above mentioned definitions. Furthermore an i i ,
exception handling is described by the following DSL deﬁni--rhe handler de_flned _ble ckl eDown is called frequently
tion: to manage the incoming messages by the BOINC server, e.g.
command to abort one workunit or informations of the current
handl e TypeOF Exception (: optional Nane) { BOINC credit points.
I+ to be defined handler =/ Furthermore, general descriptive information about the ap

} plication can be defined with the statemémif o.

Predefined exception handlers are reusable by other excepf o {
tions. This is enabled by using theef statement which uses aut hor="Chri stian Benjam n Ri es";
the optional namept i onal Name of the previous example. emai | ="cri es@ h- bi el ef el d. de";

handl e Anot her TypeOf Except i on |1 cense="FH Bi el efel d";
ref optional Nane: descri pti on="Spi nhenge@one Exanpl e";

pr oj ect =" Spi nhenge@one";
The BOINC framework uses interprocess communicationyer si on="3. 16" ;
(IPC) to exchange data between different application imtsts,
e.g. scientific application, and screensaver. The nativg wa)
to use IPC needs the definition of shared variables, efg. Visual Grid Framework
in a C/C++struct or cl ass definition and furthermore Fig. 7 shows the proposetfisual Grid Frameworklayer
different functions which handles these variables. Aswiell- which is defined between the layer that describes the un-
formed definition would be easier to use and reduces thHerlying computer hardware, the BOINC framework, and
effort of changing code parts in the source files. The DShe VisualGridML Genmodel The Visual Grid Framework
statemenexchange describes the structure of the IPC withoffers a less complex access to the BOINC functionalities
C/C++ language elements like datatypes which are usableaimd handles the creation of applications for differentfptat
every application. The keyworfleat ur e defines an AOP targets, e.g. Intel 686 based 32-bit or 64-bit architesture

are resolved by generating files. Furthermore, a makefile is

Visual Grid Framework A generated which on execution builds the complete appbioati
Controller 0. Fragments | for the defined client platform architecture.

1PC V. CONCLUSION
+IPClnitialization(name)

+IPCUpdater()

We have presented a first modeling language approach for

Worker:Spinhenge 0.1 developing Public Resource Computing applications on the
R 1\ basis of BOINC. We have demonstrated that the complete
SrersTverSoihenae Soinc:Handler BOINC framework can be divided into a few logical packages
+doWork() n that provide the necessary graphical and textual model ele-
= ments to allow for a model-based development of application
/:'\ . . 1 Ax with subsequent source code generation. Our approach is
 <<instantiate>> BOING Clrant technically realized by using standardized and well-define
! technologies26]. Thus far, we have just implemented a small
Main - part of the BOINC functionalities. Key features like grapi
and textual modeling elements, tMsualGridML Genmodel
have been defined to an extent that we could show the general
Fig. 8. Composition of the Visual Grid Framework Approach

feasibility of our approach. However, further investigats
with regard to the abstraction of the system architectuee, d
endencies, error checking, and the transformation terdifft
Qrget languages are needed. We have successfully pedorme
a first test of our approach by modeling an existing BOINC
. . application with just a few lines of DSL code using external
Grid Framework and BOINC Framework. In Fig8 we show libraries for the core computational routines and abstract

how theVisual Grid Layerworks. _ of the BOINC functionalities. However, most steps of our
TheMai n class is generated by the code generation proces§qeling process are still performed manually, and we are

and.con.tains the implementation of the starting routinéss T currently working on the creation of a unified development
routine instantiates the interface to the BOINC framewak & ironment that supports the wide range of technologies
well as to the scientific application. The entry point of th?ncluding a one and only graphical modeling framework which

scientific application is called using trgoWork() functions inimizes the need of textual modeling fragments, autamati
of theWorker::Splnhengand_Sc_ree_nsaver::Spmhenghasses. dependencies resolving, completely error-free code geiner
These two classes are specializations of the ab<Dawtroller and higher support for legacy applications.

class. TheController class keeps track of all necessary data
management, e.g. input, and output data files, checkpoint
definitions, etc. ThdPC class (Interprocess-Communication)
is completely generated and implements the initializatiod

The left side describes one approach to generate the fanc
calls and logical program parts between the textual-/gcapbh
modeling tools, fragmentsyisualGridML GenmodelVisual

REFERENCES

[1] D. P. AndersonBOINC: A System for Public-Resource Computing and

Storage 5th IEEE/ACM International Workshop on Grid Computing.

update routines. This class is used by YNerker::Spinhenge
and Screensaver::Spinhenggasses for the exchange of data.[2]
The externalBOINC Clientclass is an actor and therefore 3]
represents just the interface to the client. The BOINC Clien
has the full control of the executed applications and preegs

As a consequence, there exist two ways to generate ?ﬂ
application within theVisual Grid Framework (1) creation
of a class which is derived from the abstr&zntroller class,

(2) the definition of AOFoinpointsandadvicesas defined by [
the DSL in SeclV-D.

As a first test of our approach we have created an appli-
cation which is similar to the BOINC sample to perform alfl
transformation of lowercase to uppercase texts. The BOINC
sample is based on approximatdly0 lines of code, including [7]
the makefile, C++ header, source files, @adBOINC specific
function calls. In contrast to this, our generated applcat
contains only abouf0 lines of code, includings0 lines of
DSL code, and30 lines of application specific code which
performs the transformation. All defined dependencies, e.égl
for the initialization of the process or exception handling

(8]

November 8, 2004, Pittsburgh, USA

D. P. Anderson, C. Christensen, and B. Allddesigning a Runtime
System for Volunteer ComputindgEEE Computer, 2006

S. Apel, T. Leich, M. Rosenmiiller, and G. SaakeatureC++: Feature-
Oriented and Aspect-Oriented Programming in G+¥echnical Re-
port, Department of Computer Science, Otto-von-Guerickevérsity,
Magdeburg, Germany, 2005

S. Apel, T. Leich, and G. Saakéspectual Mixin Layers: Aspects and
Features in Concertln Proceedings of International Conference on
Software Engineering (ICSE), 2006

S. Apel and D BatoryWhen to Use Features and Aspects? A Case
Study In Proceedings of ACM SIGPLAN 5th International Conferenc
on Generative Programming and Component Engineering (GPEE’'06
Portland, Oregon, October 2006

H. Bruneliere, J. Cabot, and F. Houaulfombining Model-Driven
Engineering and Cloud ComputindtlanMod, INRIA RBA Center &
EMN, France, Nantes, 2010

D. Batory, J. N. Sarvela, and A Rauschmay&galing Step-Wise
RefinementlEEE Transactions on Software Engineering (TSE), 30(6),
2004

T. Estrada, M. Taufer, and D. P. Andersdterformance Prediction and
Analysis of BOINC Projects: An Empirical Study with EmBOINICJ
Grid Computing, Springer, 2009

R. C. Gronback, E. Gamma, L. Nackmann, and J. Wiegd&dipse
Modeling Project, A Domain-Specific Language (DSL) Topkitdison-
Wesley, 2009, ISBN: 978-0-321-53407-1

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]
(18]

[19]

A. HessellungDomain-Specific MultimodelindT University of Copen-
hagen, Denmark, 2008

P. Kacsuk, J. Kovacs, Z. Farkas, A. C. Marosi, G. Gombad arj20]

Z. Balaton, SZTAKI Desktop Grid (SZDG): A Flexible and Scalable
Desktop Grid Systemdournal of Grid Computing, 2009

G. Kiczales et al. Aspect-Oriented Programmingn Proceedings of [21]

European Conference ob Object-Oriented Programming (ECQOBY
D. Kirk, and W. W. Hwu,Programming Massively Parallel Processors:

A Hands-On ApproachMorgan Kaufman Publ Inc, 2010, ISBN: 978- [22]

0123814722

K. Lieberherr, D. H. Lorenz, and J. Ovlingeékspectual Collaborations: [23]

Combining Modules and AspecfBhe Computer Journal, 46(5), 2003
A. C. Marosi, Z. Balaton, and P. KacsulkGenWrapper: A Generic
Wrapper for Running Lagacy Applications on Desktop Gri@sd

Workshop on Desktop Grids and Volunteer Computing System&(RIC [24]

2009), 2009 May, Rome, Italy
M. Mezini and K. OstermannVyariability Management with Feature-

Oriented Programming ans Aspectsr Proceedings of ACM SIG- [25]

SOFT International Symposium on Foundations of Softwardriesging
(FSE), 2004
OMG Adopted Specification formal/2009-02-02MG Unified Model-

ing LanguageTM (OMG UML)Superstructure, Version 2.2, OMG, 2009[27]

OMG Adopted Specification formal/2010-02-0O0MG Object Con-
straint Languag@, Version 2.2, OMG, 2010
C. B. Ries, and C. SchrodetomsolGrid - A framework for performing

[26]

large-scale parameter studies using Comsol Multiphysitd BOING
COMSOL Conference, Paris, France, 2010

C. B. Ries,Performance measuring and automatic calibration of BOINC
installations University of Applied Sciences Bielefeld, Germany, unpub-
lished

C. B. Ries, T. Hilbig, C. Schroder et abpinhenge@home - Monte Carlo
Metropolis Version 3.16, University of Applied Sciences Bielefeld,
Germany,http://spin.fh-bielefeld.de

C. B. Ries, T. Hilbig, and C. SchrodesML 2.2 Profile: Visu@IGridML.
University of Applied Sciences Bielefeld, Germany, unpsibdd

C. Schrdder, “Spinhenge@home - in search of tomorrow®neagnetic
application”,to appear in Distributed & Grid Computing - Science Made
Transparent for Everyone. Principles, Applications andpjBurting
Communities2010

0. Spinczyk, D. Lohmann, and M. Urbamdvances in AOP with
AspectC++ Software Methodologies, Tools and Techniques (SoMeT
2005), 10S Press, September, 2005, Tokyo, Japan

T. Imamura, B. Dillaway, and E. SimorXML Encryption Syntax and
ProcessingW3C, December, 200Attp://www.w3.org/TR/xmlenc-core
Xtext - programming language framework, Xpand - a templatglage,
http://www.eclipse.org/modeling/mdt

U. Zdun,Concepts for Model-Driven Design and Evolution of Domain-
Specific Languagedn Proceedings of the International Workshop on
Software Factories OOPSLA, pp. 1-6, October, 2005

http://spin.fh-bielefeld.de
http://www.w3.org/TR/xmlenc-core
http://www.eclipse.org/modeling/mdt

	Introduction
	Typical errors during the BOINC server configuration process
	The BOINC Application Programming Interface

	State of the Art
	Abstraction of the BOINC Framework
	The modeling language approach for the abstraction of BOINC
	Graphical modeling environment
	Graphical modeling elements
	Aspect-Oriented Programming and Feature-Oriented Programming
	Domain-specific language for BOINC
	Visual Grid Framework

	Conclusion
	References

